

(SOET)(BTech-MechanicalEngineering)

Title of the Course	Basic Electronics
Course Code	ECL0101[T]

			TallA						
Year	1st Semester		1st	Credits	L	Т	Р	С	
roui	150	ocilicater	150	orcans	2	1	1	4	
Course Type	Embedo	led theory and lab							
Course Category	Founda	tion core							
Pre-Requisite/s	Knowled	dge of modern physics	6	Co-Requisite/s					
Course Outcomes & Bloom's Level	devices CO2- To CO3- To (BL3-A) CO4- To Analyze CO5- To	 CO1- To become familiar with various types of semiconductors and basic electronic devices. (BL1-Remember) CO2- To understand the operation of various electronic devices. (BL2-Understand) CO3- To implement the concepts of semiconductors to various semiconductor devices. BL3-Apply) CO4- To analyze the various electronic devices and their frequency response. (BL4-Analyze) CO5- To evaluate the performance of electronic devices such as diodes, transistors, function generators, and cathode ray oscilloscopes. (BL5-Evaluate) 							
Coures Elements	Entrepre Employa Profess Gender	Values X	SDG (Goals)	SDG4(Quality education)					

.

Modules	Contents	Pedagogy	Hours
I	Semiconductor Basics: Intrinsic and Extrinsic Semiconductors, Current Mechanisms in Semiconductors: Drift and Diffusion Current. PN Junction: Formation of PN Junction, Creation of Depletion Layer, Forward and Reverse Biasing, Diode Current Equation, Volt – Ampere characteristics of PN junction diode and effect of temperature on V-I characteristics, Diode resistances, Diode Capacitances, Diode Equivalent circuits: Piecewise Linear approximation Model, Simplified approximation Model, Ideal equivalent circuit.	Lecture Method/Video Clips	12
II	Diode Applications: Diode as Rectifier: Half Wave rectifier, Full Wave Rectifier, Calculation of Average, RMS loads voltages and currents, Rectification efficiency, PIV, Ripple factor. Break Down Diodes: Avalanche and Zener Breakdown. V-I characteristics of Zener Diode, Zener Diode Specifications, Zener Diode Equivalent Circuit. Zener Diode as Shunt Regulator: Analysis of Zener diode as shunt regulator under varying Load capacitance and Supply voltage.	Lecture Method/Video Clips/Simulation	10
111	Bipolar Junction Transistor: Formation of NPN and PNP Transistor, unbiased and biased transistor, Transistor currents, Symbol of NPN and PNP Transistors, Common Base, Common Emitter and Common Collector Configurations along with Input and Output Characteristics, Transistor Amplifying action. Transistor Biasing: Load Line, Operating Point, Need of Biasing, Different Biasing Techniques: Fixed Bias, Emitter Stabilized Bias, Voltage Divider Bias, DC Bias with Voltage Feedback	Lecture Method/Video Clips/Virtual Labs	10
IV	Field Effect Transistor: JFET: Construction of N channel and P channel JFET, Working of JFET along with Drain and Transfer Curves, JFET Parameters and symbol, JFET Biasing. MOSFET: Construction and working of N channel and P channel Depletion and Enhancement MOSFETs, Drain and Transfer curves, Symbols. Operational Amplifier: Basics of operation amplifier, op- amp parameters: Input offset voltage, Output offset voltage, Slew rate, CMRR etc. Open and closed loop gain, Virtual Ground, Characteristic of ideal operational amplifier. Operational Amplifier Applications: Use of Ideal Op-amp to construct: Inverting amplifier, Non-inverting amplifier,	Lecture Method/Video Clips/Virtual Labs	12

3/	10/25, 1:48 PM			
		Differentiator, Integrator, Adder, Subtractor etc.		
	V	Electronic Instruments: Digital Voltmeter, Digital Multimeter, Cathode Ray Oscilloscope, Applications of CRO: Measurement of Voltage, Current, Time Period, Frequency, Use of Lissajous Pattern to Measure unknown frequency and phase difference, Function Generator.	Lecture Method/Video Clips/Virtual Labs/Simulation	10

Part C

	1 01			
Modules	Title	Indicative-ABCA/PBL/ Experiments/Field work/ Internships	Bloom's Level	Hours
1	Introduction to Laboratory Equipment's: Cathode Ray Oscilloscope (CRO), Function Generator, Digital Multimeter.	Experiments	BL2-Understand	2
3	To study Full Wave Centre Tap Rectifier and calculate various parameters.	Experiments	BL4-Analyze	2
1	To study and plot the V-I characteristics of PN Junction Diode.	Experiments	BL4-Analyze	2
4	To study Full Wave Bridge Rectifier and calculate various parameters	Experiments	BL4-Analyze	2
3	To study and plot Input & Output Characteristics of BJT in Common Base Configuration	Experiments	BL5-Evaluate	2
4	To study and plot Input & Output Characteristics of BJT in Common Emitter Configuration	Experiments	BL4-Analyze	2
2	To Design Half-Wave rectifier by using basic electronic components	PBL	BL6-Create	10
4	To Design subtractor using OPAM	PBL	BL6-Create	10

Part D(Marks Distribution)

	Theory								
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation				
100	40	40	12	60					
			Practical						
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation				
100	50	40	20	60					

Part E

Books	Boylestad & Nashelsky Electronics Devices and Circuit Theory Pearson Education India, 2009. Ramakant A. Gayakwad Op Amps and Linear Integrated Circuits Englewood Cliffs: Prentice-Hall, 2012.
Articles	Popović, Božidar, et al. "Remote control of laboratory equipment for basic electronics courses: A LabVIEW-based implementation." Computer Applications in Engineering Education 21.S1 (2013): E110-E120.
References Books	Malvino, L. Electronic principles The McGraw Hill Companies, 2016. Sedra and Smith, Microelectronics circuits, Fifth edition by Oxford University Press 2017 Graham Bell Electronic Devices and Circuits Prentice-Hall 2009
MOOC Courses	https://nptel.ac.in/courses/122106025
Videos	https://nptel.ac.in/courses/122106025

Course Articulation Matrix

COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-	-	-	-	2	-	-	-	3	-	-	-	-	1
CO2	3	2	1	-	-	2	-	-	-	3	-	-	2	2	2
CO3	1	1	1	3	-	-	-	-	-	-	-	-	2	3	2
CO4	1	1	1	3	2	-	-	I	I	-	-	-	3	3	2
CO5	1	1	-	2	-	-	-	-	-	-	-	-	2	3	2
CO6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

(SOET)(BTech-MechanicalEngineering)

Title of the Course	Communication Skills & Colloquim
Course Code	HUL0101[T]

Year	1st	Semester	1st	Credits	L	Т	Р	С	
Tear	151	Jennester	151	Greatis	3	0	1	4	
Course Type	Embed	ded theory and lab							
Course Category	Discipli	ne Core							
Pre-Requisite/s		t must have knowled age proficiency.	dge about	Co-Requisite/s		eloped munica	ation sl	kill.	
Course Outcomes & Bloom's Level	Remen CO2- C using a CO3- E (BL3-A CO4- J	 CO1- Determine interpersonal skills and be an effective goal-oriented team player.(BL1-Remember) CO2- Classify and formulate the elementary intricacies of Scientific and Technical Writing using applicative grammar construct. (BL2-Understand) CO3- Examine attitudes, emotional intelligence and understand its influence on behavior. (BL3-Apply) CO4- Justify approaches to conflict resolution(BL4-Analyze) CO5- Evaluate Formal Communication.(BL5-Evaluate) 							
Coures Elements	Entrepr Employ Profess Gender Human	evelopment ✓ reneurship × vability × sional Ethics × r × Values √ nment ×) SDG4(Quality education)						

.

Modules	Contents	Pedagogy	Hours
Module 1	Introduction to Communication Skills, Objectives, Significance of Communication, Flow of Communication, Principles Communication, Essential Features, Process of Communication, Verbal (Oral & Written) and Non-verbal Communication, Barriers to Effective Communication, Introduction to Technical Communication, Major Difference between Technical Communication and General Communication.	Classroom Lecture, PPts,	6
Module 2	Introduction & Significance of Listening skills, Types of Listening, Barriers in Effective Listening, Basic Grammar - Parts of Speech, Active Passive and Articles.	Classroom Lecture, PPts,	6
Module 3	Introduction to Formal Letter Writing, Elements of Letter Writing and Style of Writing, Layout & Structure of Formal Letter Writing, Introduction to the Types of Business Letters- Enquiry, Calling Quotations, Order,Complaint and Adiustment.Introduction to Employment Communication- Job Application, Writing Resume, Differences among Resume, Curriculum Vitae & Bio-data.	Classroom Lecture, PPts, Videoes	6
Module 4	Introduction to Oral Presentations, Objectives, Significance and Approach, Preparation and Delivery of Oral Presentation (topics to be selected by the teachers). Introduction to Interview Skills. How to Develop Interview Skills. Dos and Don't of Interviews, Types of Interviews, Reviewing TV Program/Book/News Paper Articles etc	Classroom Lecture, PPts, Videos	6
Module 5	Introduction to Report Writing, Major Objectives of Writing Reports, Significance of Business/Technical, Types and Forms of Reports, Styles of Writing Reports- Printed Format, Memo Format, Letter Format, Book/Letter Text Format. Layout and Structure of Reports, Components of Reports, Writing.	Classroom Lecture, PPts, Videos	6

Part D(Marks Distribution)

	Theory								
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation				
100	40	40	12	60					
			Practical						
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation				
100	50	40	20	60	30				

Part E

Books	Technical Communication – Principles and Practices by Meenakshi Raman & Sangeeta Sharma, Oxford Univ. Press, 2007, New Delhi
Articles	https://www.jetir.org/papers/JETIR2108373.pdf https://open.lib.umn.edu/communication/chapter/1-2-the-communication-process/ https://www.iosrjournals.org/iosr-jbm/papers/Vol22-issue8/Series-2/E2208024254.pdf
References Books	Modern Technical Writing by Sherman, Theodore A (et.al); Apprentice Hall; New Jersey; U.S
MOOC Courses	https://nptel.ac.in/courses/109103020
Videos	https://nptel.ac.in/courses/109103020

Course Articulation Matrix

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	-	-	2	2	-	-	-	2	-	-	1	-	1
CO2	2	2	1	2	2	2	-	-	-	2	-	-	1	-	3
CO3	2	1	1	-	1	-	-	-	-	2	-	-	3	2	3
CO4	3	2	-	2	1	-	-	-	-	2	-	-	2	3	3
CO5	3	2	-	2	1	-	-	-	-	2	-	-	2	2	3
CO6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

(SOET)(BTech-MechanicalEngineering)

Title of the Course	Calculus For Engineers
Course Code	MAL0101[T]

Year	1st	Semester	1st	Credits	L	Т	Р	С
Tear	131	Jennester	150	Creatta	2	1	1	4
Course Type	Embedo	ded theory and lab						
Course Category	Basic S	ciences and Mathem	atics					
Pre-Requisite/s		nowledge of Functior ity and Differentiabili		Co-Requisite/s		ic kno ables	wledg	ge of
Course Outcomes & Bloom's Level	evaluati CO2- Ki diverger CO3- A Minima. CO4- Fi to Beta CO5- E integrals	 CO1- Knowledge about the derivative and use of derivative to expand the functions and evaluation of Maxima and Minima. (BL1-Remember) CO2- Knowledge about the vector valued function directional derivative, gradient, livergence and curl with their properties(BL2-Understand) CO3- Applying: Partial derivatives and its applications apply to evaluate the Maxima and Ainima.(BL3-Apply) CO4- Find the area under a given curve, length of an arc through integration as application o Beta and Gamma Function.(BL4-Analyze) CO5- Evaluating: Find the area and volume by applying the techniques of double and triple integrals., (BL5-Evaluate) CO6- Applications of vector valued function in integration to find line , surface and volume. 						
Coures Elements	Entrepro Employa Profess Gender	Values ×	SDG (Goals)	SDG4(Quality educati	on)			

·

Modules	Contents	Pedagogy	Hours
Unit 1	Differentiation, Extremaon an Interval, Rolle's Theorem and the Mean Value Theorem, Increasing and Decreasing functions and First derivative test, Second derivative test, Maxima and Minima. Functions of two variables, partial derivatives, total differential, Jacobian and it Prosperities	Audio/Video clips, group discussion, lecture with PPTs, quiz	8
Unit 2	Taylor's expansion for two variables, maxima and minima, constrained maxima and minima, Lagrange's multiplier method. Integration, Average function value, Area between curves, Volumes of solids of revolution, Beta and Gamma functions, interrelation.	Audio/Video clips, group discussion, lecture with PPTs, Quiz	8
Unit 3	Evaluation of double integrals, change of order of integration, change of variables between Cartesian and polar co-ordinates, Evaluation of triple integrals, change of variables between Cartesian and cylindrical and spherical co-ordinates, evaluation of multiple integrals using gamma and beta functions.	Audio/Video clips, group discussion, lecture with PPTs, Quiz	8
Unit 4	Scalar and vector valued functions, gradient, tangent plane, directional derivative, divergence and curl, scalar and vector potentials, Statement of vector identities, Simple problems.	Audio/Video clips, group discussion, lecture with PPTs, Quiz	8
Unit 5	Line, surface and volume integrals, Statement of Green's, Stoke's and Gauss divergence Theorems, verification and evaluation of vector integrals using them.	Audio/Video clips, group discussion, lecture with PPTs, Quiz	8

Modules	Title	Indicative-ABCA/PBL/ Experiments/Field work/ Internships	Bloom's Level	Hours
1	Introduction to MATLAB through matrices, and general Syntaxes.	Experiments	BL3-Apply	2
2	Plotting and visualizing curves and surfaces in MATLAB– Symbolic computations using MATLAB	Experiments	BL3-Apply	2
3	Evaluating Extremum of a single variable function	Experiments	BL3-Apply	2
4	Understanding integration as Area under the curve	Experiments	BL3-Apply	2
5	Evaluation of Volume by Integrals (Solids of Revolution)	Experiments	BL3-Apply	2
6	Evaluating Maxima and minima of functions of several variables	Experiments	BL3-Apply	2
7	Evaluating triple integrals	Experiments	BL3-Apply	2
8	Evaluating gradient, curl and divergence	Experiments	BL3-Apply	2

Part D(Marks Distribution)

	Theory								
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation				
100	40	40	12	60	0				
			Practical						
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation				
100	50	40	20	60	0				

Books	1. Thomas' Calculus by George B. Thomas, D. Weirand J. Hass, 13th edition 2014, Pearson. 2. B. S. Grewal, Higher Engineering Mathematics, Khanna Publishers. 3. B.V. Ramana, Higher Engineering Mathematics, Tata Mc Graw Hill.
Articles	
References Books	1. E. Kreyszig, Advanced Engineering Mathematics, 8th Ed., John Wiley and Sons, 1999. 2. Gorakhprasad, Integral Calculus, Pothishala Publication. 3. Gorakhprasad, Differential Calculus, Pothishala Publication.
MOOC Courses	https://onlinecourses.nptel.ac.in/noc24_ee09/preview
Videos	https://onlinecourses.nptel.ac.in/noc24_ph02/preview

Course Articulation Matrix

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	3	1	2	2	-	-	-	-	-	-	-	-	2	3
CO2	2	3	1	2	2	-	-	-	-	-	-	-	-	2	3
CO3	2	2	1	1	1	-	-	-	-	-	-	-	-	1	3
CO4	1	2	-	-	-	-	-	-	-	-	-	-	-	1	2
CO5	-	2	-	-	-	-	-	-	-	-	-	-	-	1	2
CO6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

.

(SOET)(BTech-MechanicalEngineering)

Title of the Course	Engineering Mechanics
Course Code	MEL0101[T]

Year	1st	Semester	1st	Credits		Т	Р	С
i cai	131	Jennester	150	Greats	2	1	1	4
Course Type	Embeo	lded theory and lal	C					
Course Category	Found	ation core						
Pre-Requisite/s	Knowle	edge of basic scier	ices	Co-Requisite/s				
Course Outcomes & Bloom's Level	in stati CO2- (in stati CO3- (shafts CO4- (Analyz CO5- (c and kinetic condi CO2 Understand th c and kinetic condi CO3 Apply system and beams. (BL3-/ CO4 Analyze the b 2e)	tions(BL1-Rem ne basics of scie tions.(BL2-Und of forces in the Apply) eams and trusse ar force and ben	nces in effects of system	m of fo bower f	rces on transmi oment o	rigid b ssion d f inertia	odies evices, a. (BL4-
Coures Elements	Skill Development ✓ Entrepreneurship × Employability ✓ Professional Ethics × Gender × Human Values × Environment ×						structur	e)

•

Modules	Contents	Pedagogy	Hours
Unit-1	Introduction of Engineering Mechanics Basic concepts of system of forces- Coplanar Concurrent Forces - Components in Space – Resultant Moment of Forces and its Application - Couples and Resultant of Force System - Equilibrium of System of Forces- Free body diagrams- Equations of Equilibrium of Coplanar Systems and Spatial Systems.	Lectures with whiteboard/PPT, Quiz, Group discussion	9
Unit-2	Friction Types of friction, Limiting friction, Laws of Friction, static and Dynamic Friction. Motion of Bodies - Wedge, Ladder and Screw jack.	Lectures with whiteboard/PPT, Quiz, Group discussion	7
Unit-3	Transmission of Power Belt Drivers - Open, Crossed and compound belt drives, length of belt, tensions- tight side and slack side, Power transmitted and condition for maximum power.	Lectures with whiteboard/PPT, Quiz, Group discussion	7
Unit-4	Center of Gravity & Moment of Inertia: Centroids - Centroids of Composite figures - Centre of Gravity of Bodies - Area moment of Inertia: - polar Moment of Inertia - Transfer - Theorems - Moments of Inertia of Composite Figures, Moment of Inertia of Masses - Transfer Formula for Mass Moments of Inertia	Lectures with whiteboard/PPT, Quiz, Group discussion	8
Unit-5	Shear Force & Bending Moment Diagrams & Trusses: Support Reactions, Shear force and bending moment Diagram for Cantilever & simply supported beam with concentrated, distributed load and Couple. Application of Equilibrium Concepts. Trusses- types, method of joints and method of moments.	Lectures with whiteboard/PPT, Quiz, Group discussion	9

Modules	Title	Title Indicative-ABCA/PBL/ Experiments/Field work/ Internships		
Experiment- 1	1. To verify the law of Triangle of forces and Lami's theorem.	Experiments	BL3-Apply	2
Experiment- 2	2. To verify the law of parallelogram of forces	Experiments	BL3-Apply	2
Experiment- 3	3. To verify law of polygon of forces	Experiments	BL3-Apply	2
Experiment- 4	4. To find the support reactions of a given truss and verify analytically.	Experiments	BL3-Apply	2
Experiment- 5	5. To determine support reaction and shear force at a given section of a simply supported beam and verify in analytically using parallel beam apparatus.	Experiments	BL3-Apply	2
Experiment- 6	6. To verify bending moment at a given section of a simply supported beam.	Experiments	BL3-Apply	2
Experiment- 7	7. To find coefficient of friction on horizontal and inclined planes.	Experiments	BL3-Apply	2
Experiment- 8	8. To determine centre of gravity of different shapes.	Experiments	BL3-Apply	2

Part D(Marks Distribution)

Theory								
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation			
100	40	40	12	60				
			Practical					
Total Minimum Passing Marks Marks		External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation			
100	50	40	20	60				

	Part E						
BooksEngineering Mechanics by Dr. D.S. Kumar, S.K. Kataria & sons, latest edition. Engineer Mechanics by R. K. Rajput, S.Chand & Co. Engineering Mechanics: Statics & Dynamics R.C. Hibbler							
Articles							
References Books	• Engineering Mechanics- statics dynamics by Boresi & Schmidt, Thomson Books • Engineering Mechanics - Schaum's series - Mc.Grawhill Publications. • Engineering Mechanics by S. Timashenko, D.H. Young and J.V. Rao						
MOOC Courses	https://archive.nptel.ac.in/courses/112/106/112106286/						
Videos							

·

PO5 PO12 COs PO1 PO2 PO3 PO4 PO6 PO7 PO8 PO9 PO10 PO11 PSO1 PSO2 PSO3 CO1 3 2 1 1 1 1 1 1 _ 1 -_ -_ -CO2 3 3 1 1 1 3 1 1 1 2 1 1 1 _ -3 3 2 2 2 2 2 1 CO3 3 1 1 1 1 1 -CO4 2 3 2 2 1 2 2 2 2 2 3 3 1 -1 CO5 3 3 3 3 2 2 2 2 3 3 3 3 3 2 3 CO6 ---------------

Course Articulation Matrix

(SOET)(BTech-MechanicalEngineering)

Title of the Course Mechanical Workshop Practice				
Course Code	MEP0101[P]			

Year	1st Semester		1st	Credits	L	Т	Р	С	
i cai	151	Jennester	151	Greatis	0	0	2	2	
Course Type	Lab on	y							
Course Category	Discipli	ne Core							
Pre-Requisite/s		asic knowledge of casting, joining and Co-Requisite/s							
Course Outcomes & Bloom's Level	CO2- T CO3- T and we CO4- T CO5- T	 CO1- To remember basics of physics.(BL1-Remember) CO2- To understand the tool materials and their proper applications.(BL2-Understand) CO3- To prepare and manufacture the various joints using carpentry and fitting shop tools and welding process.(BL3-Apply) CO4- To analyze casting and welding products.(BL4-Analyze) CO5- To evaluate the casting process parameters and welding parameters for efficient productivity.(BL5-Evaluate) 							
Coures Elements	Entrepr Employ Profess Gender Human	evelopment ✓ reneurship × vability ✓ sional Ethics × r × Values × ment ×	neurship X pility ✓ nal Ethics X SDG (Goals) SDG9(Industry Innovation and Infrastruc alues X						

·

Modules	Contents	Pedagogy	Hours
Unit-1	Carpentry Shop Carpentry, process of finished products, building work, furniture, cabinet making Etc. joinery, preparation of joints, Timber, Timber sizes, classification of Timber, Characteristics of good timber, seasoning of wood.	Lectures with whiteboard/PPT, Recorded video/interactive videos, Quiz	
Unit-2	Marking and Measuring Tools Steel rule and Steel tape, Marking gauge, Try-square, Compass and divider, Scriber or marking knife, Bevel, Holding Tools- Carpenter's vice, C-clamp, Bar cramp, Planning Tools- Jack plane, Smoothing plane, Rebate plane, Plough plane Cutting Tools- Saws, Cross-cut or hand saw, Rip saw, Tenon saw, Compass saw, Chisels, Drilling and boring tools- Carpenter's brace, Auger bit, Hand drill, Gimlet, miscellaneous tools- Mallet, Pincer, Claw hammer, Screw driver, Wood rasp file, Bradawl, wood joints- Lap joints, Mortise and Tenon Joints, Bridle joint.	Lectures with whiteboard/PPT, Recorded video/interactive videos, Quiz	
Unit-3	Welding Shop Electric arc welding, Gas welding, Thermal welding, Electrical Resistance welding, Friction welding Equipment Used for Welding- Transformers, Motor generators, Rectifiers, Welding cables, Electrodes, electrode holder, Ground clamp, wire brush and chipping hammer, Welding table and cabin, Face shield, Hand gloves. Techniques of welding Preparation of work, striking an arc, Strike and Withdraw, Touch and with draw, Weaving, Types of Joints- Butt Joint, Corner Joint, Tee Joint, Lap joint, Edge welding positions- Flat position welding, Horizontal position welding, Vertical position welding, Overhead position welding.	Lectures with whiteboard/PPT, Recorded video/interactive videos, Quiz	
Unit-4	Fitting Shop Introduction hand fitting,the assembly of machine tools, jigs, gauges, etc., bench work. assembly of mating parts, removal of metal, fit, simple hand tools. filing, chipping, scraping, sawing drilling, and tapping. Holding tools, Cutting Tools - Finishing Tools, Reamers, Files, miscellaneous tools File card, Spirit level, Ball Peen Hammer, Cross Peen, Hammer, Straight-Peen Hammer, Screw driver, Spanners.	Lectures with whiteboard/PPT, Recorded video/interactive videos, Quiz	
Unit-5	Foundry shop Process, Melting, Furnace, Degassing, Mold making, Pouring, Shakeout, Degating, Heat treating, Surface cleaning, Finishing,	Lectures with whiteboard/PPT, Recorded video/interactive videos, Quiz	

Modules	Title	Indicative-ABCA/PBL/ Experiments/Field work/ Internships	Bloom's Level	Hours
Experiment- 1	To study of Tools and Their Operations in Carpentry joint	Experiments	BL2- Understand	4
Experiment- 2	To Prepare Half Lap corner joint and T- joint	Experiments	BL3-Apply	4
Experiment- 3	To study of tools and their operations in Fitting Shop	Experiments	BL3-Apply	4
Experiment- 4	To study of tool and operations in welding shop	Experiments	BL3-Apply	4
Experiment- 5	To study of single point cutting tools , machine tool and operations in machine shop	Experiments	BL3-Apply	4

Part D(Marks Distribution)

			Theory		
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation
	0	0			
	•		Practical		
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation
100	50	40	20	60	

Part E

Books	1. S. K. Hazra Chowdhry Elements of Workshop Technology Vol-1 Tata Mc Graw Hill Publication 2 John K.C Mechanical Workshop Practice Paperback – 1 Khanna Publishers, 2001
Articles	
References Books	1. English, Paperback, Dave A K, Dubey D Workshop Technology & Practice Standard Publishers, 2010 2. W.A.J. Chapman Workshop Technology by vol. 1,2 Mc Graw Hill, 2001
MOOC Courses	https://archive.nptel.ac.in/courses/112/103/112103108/
Videos	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	2	-	-	2	2	1	-	-	2	2	2	1	-	-
CO2	1	2	2	2	2	1	2	2	-	-	-	2	2	3	3
CO3	2	1	2	-	-	-	2	2	-	-	-	2	3	-	3
CO4	1	2	2	-	-	2	1	I	I	2	2	3	3	2	2
CO5	-	2	1	2	2	2	3	2	-	-	-	2	3	2	3
CO6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Course Articulation Matrix

.

(SOET)(BTech-MechanicalEngineering)

Title of the Course Engineering Physics			
Course Code	PHL0101[T]		

Year	1et	1st Semester 1st		Credits	L	Т	Р	С			
i cai	130	Demester	131	orealta	3	0	1	4			
Course Type	Embe	nbedded theory and lab									
Course Category	Basic	sic Sciences and Mathematics									
Pre-Requisite/s	Knowl 12	Knowledge of Physics upto classCo-Requisite/shematicsKnowledge of upto class 12									
Course Outcomes & Bloom's Level	Optics CO2- semic CO3- Optics CO4- semic CO5-	 CO1- To remember the concepts of Quantum Mechanics, Nanophysics, semiconductors, Optics, LASER and optical fiber.(BL1-Remember) CO2- To understand the basic concepts of Quantum Mechanics, Nanophysics, semiconductors, Optics, LASER and optical fiber.(BL2-Understand) CO3- To apply the understanding of Quantum Mechanics, Nanophysics, semiconductors, Optics, LASER and optical fiber(BL3-Apply) CO4- To enable students to analyze salient features of Quantum Mechanics, Nanophysics, semiconductors, Optics, LASER and optical fiber.(BL4-Analyze) CO5- To evaluate the applications of fundamentals of Quantum Mechanics, Nanophysics, semiconductors, Optics, LASER and optical fiber.(BL5-Evaluate) 									
Coures Elements	Entrep Emplo Profes X Gende Huma	Development × Dreneurship × Dyability × Ssional Ethics er × n Values × Donment ×	SDG (Goals)	SDG4(Quality education)							

.

Modules	Contents	Pedagogy	Hours
1	Unit – 1 Quantum Mechanics and its applications Wave Particle Duality, Heisenberg's Uncertainty principle, its experimental illustrations and its uses; Wave function, Physical Interpretation of probability wave function, Normalization, Concept of Eigen value and Eigen function, One dimensional time independent Schrödinger wave equation; Applications in particle confinement in 1 dimensional Box, concept of tunneling (without derivation) in Scanning tunneling microscope,	Audio/Video clips, group discussion, lecture with ppt, on white board, quiz	8
2	Unit – 2 Nano Physics Introduction to nanomaterials, Moores Law, properties of nano materials. Quantum confinements, quantum well, wire and dot, Naturally occurring Nano crystals. Applications of Nanotechnology in Industries	Audio/Video clips, group discussion, lecture with ppt, on white board,	8
3	Unit – 3 Physics of Semiconductor devices Intrinsic semiconductor, concept of doping and extrinsic semiconductors, Carrier Concentration in Semiconductors, donor states and Acceptor states, Concept of fermi Level and Fermi energy in Intrinsic & Extrinsic Semiconductors, variation of Fermi level with temperature in extrinsic semiconductors, formation of PN junctions, Hall effect and its applications	Audio/Video clips, group discussion, lecture with ppt, on white board, classroom presentations	8
4	Unit – 4 Optics Interference Division of Wave front: Fresnel's Biprism, Division of Amplitude: Interference in thin films due to reflected light, Newton rings, application of interference in thickness of thin film and in testing of optical surfaces; Idea of Polarization: linear, circular & elliptical, Production of polarized light by reflection (Brewster's laws) & double refraction, Nicol prism, Quarter & half wave plate. Applications of polarization Polaroids, to check quality of sugar cane, glare reduction in glasses,	Audio/Video clips, group discussion, lecture with ppt, on white board, quiz	8
5	Spontaneous ,Stimulated emission, and absorption of Photons Einstein coefficient and its significance, Population inversion, pumping, Optical resonator, various laser systems like Ruby, He-Ne and Semiconductor diode Lasers and their egg applications like barcoding, holograms, optical data storage; Fundamental idea about optical fiber, acceptance angle & cone, numerical aperture, Types of fibers, V- number, Fiber losses, Applications of Optical	Audio/Video clips, group discussion, lecture with ppt, on white board, quiz	8

fibers in communications : data transmission in internet, TV; imaging tools and surgery.

Modules	Title	Indicative-ABCA/PBL/ Experiments/Field work/ Internships	Bloom's Level	Hours
1	To Verify Inverse Square Law of light using a photo cell	Experiments	BL2-Understand	3
2	To measure the numerical aperture of the given optical fiber.	Experiments	BL2-Understand	3
3	To determine the dispersive power of the material of the prism using mercury light with the help of a spectrometer.	Experiments	BL4-Analyze	3
4	To draw the characteristic curve of a forward & reverse Biased P- N Junction diode.	Experiments	BL2-Understand	3
5	To determine Resolving Power of a Telescope.	Experiments	BL3-Apply	3
6	To determine the wavelength of Sodium light with Netons Ring Experiments	Experiments	BL3-Apply	3
7	To determine the Wavelength of Laser light with Diffraction grating	Experiments	BL3-Apply	3
8	To find out the value of Planks Constant Using LED	Experiments	BL5-Evaluate	3
9	To find out Specific Rotation of Sugar Solution by Poliremeter	Experiments	BL3-Apply	3
10	To determine the Hall Cofficient and Mobility of given Semicondutor	Experiments	BL3-Apply	3

Part D(Marks Distribution)

	Theory											
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation							
100	40	40	12	60								
			Practical									
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation							
100	50	40	20	60								

Part E

.

Books	Engineering Physics by M.N. Avadhanulu, S. Chand Publication
Articles	
References Books	1 Concept of Modern Physics by Arthur Beiser,2 Introduction to Solid State Physics by C Kittel 3 Optics by Ajoy Ghatak
MOOC Courses	
Videos	

COs	P01	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	-	-	-	3	3	2	-	1	1	-	-	-	-	-
CO2	2	-	2	3	3	3	3	2	3	3	-	3	-	3	-
CO3	2	-	1	3	3	3	3	2	3	3	-	3	-	3	-
CO4	1	-	-	3	-	2	-	-	-	-	-	-	-	-	-
CO5	1	-	-	2	-	2	-	-	-	-	-	-	-	-	-
CO6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Course Articulation Matrix

3/10/25, 1:48 PM

-

(SOET)(BTech-MechanicalEngineering)

Title of the Course	Essentials of Information Technology
Course Code	CSL0201[T]

		F	Part A								
Year	1st	Semester	2nd	Credits	L	Т	Ρ	С			
Tear	131	Gemester	210	oreans	2	0	2	4			
Course Type	Embedd	Embedded theory and lab									
Course Category	Foundati	on core									
Pre-Requisite/s	complete basic un system, s	understand the contents and successfully nplete this course, a participant must have a ic understanding of Basics of Computer tem, Storage Systems, Operating systems, working and Database.									
Course Outcomes & Bloom's Level	compute CO2- Ap (BL2-Un CO3- Ex programs CO4- De system (CO5- Ev	r systems (Knowledge, ply the various network derstand) plain various memory r s and blocks (Analysis) sign the concept of sof Design) (BL4-Analyze)	Understand)(BL1-F ing concepts, topolo nanagement technic (BL3-Apply) tware, operating sys	ike types, I/O devices, s Remember) ogies and remove deadle ques and Analyze the co tem for better utilization and other communication	ocks ncep of e	. (Ap ot of xterr	oply). Sub- nal	-			
Coures Elements	Entrepre Employa	onal Ethics X X /alues X	SDG (Goals)	SDG4(Quality education SDG9(Industry Innova Infrastructure)		and					

.

Modules	Contents	Pedagogy	Hours
1	Computer Basics: Basics of Computer Systems(T1,T2), Evolution of Computers, Computer Generations, Classification of Computers(T1,T3), Computer Applications, Interaction between User and Computer(T7). Hardware Components, Basic Computer Organization, Input and Output Devices(T1,T3), Central Processing Unit(T1), System Bus Architecture, Memory or Storage Unit	Lecture with White Board, PPT	6
2	Operating System: Introduction to Operating System, Function of Operating Systems(T1), Working Knowledge of GUI-Based Operating System (T3,T4), Working with latest version of Windows(T3,T4). Various Operating Systems, Evaluation of Operating System(T3,T4,T,7), Virtual Machine, Operating Systems for Mobile, Installation of Operating System(T1,T3,T4), Boot Process.	Lecture with White Board, PPT	6
3	Computer Networks and World Wide Web: Introduction to Computer Networks (LAN, MAN, WAN, PAN)(T3,T4), Network Topologies, Ethical Issues related to Network Security(T2,T3). Internet and World Wide Web(T7,T8), Internet Evolution(T1), FTP, Electronic Mail, Search Engines(T1), Introduction to HTML, Static and Dynamic Web Pages	Lecture with White Board, PPT	6
4	Computer Software: Introduction, System Software(T1,T3), Application Software, Firmware(T3), Software Installing and Uninstalling(T3,T4), Software Development Steps, Characteristics of good software(T1,T7), Usability of software, Introduction to Free and Open Source Software(T3,T4), Introduction to Database Management System	Lecture with White Board, PPT	6
5	Subprograms and Blocks: Problem Solving: Flow Charts(T3,T4), Tracing Flow Chart, Algorithms. Fundamentals of sub- programs(T1,T3,T4), Scope of life time of variables, static and dynamic scope(T7), design issues of subprograms and operations, parameter passing methods(T3,T4), overloaded sub-programs, generic sub-programs(T1,T3), design issues for functions user defined overloaded operators	Lecture with White Board, PPT	6

Modules	Title	Indicative-ABCA/PBL/ Experiments/Field work/ Internships	Bloom's Level	Hours
1	Explain the Installation process of Operating system and its Memory Management.	Experiments	BL2-Understand	10
2-3	Design of a Web Page which describe your Biodata.	PBL	BL3-Apply	10
4-5	Describe Software development life cycle (SDLC) with all components.	PBL	BL5-Evaluate	10

Part D(Marks Distribution)

	Theory											
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation							
100	40	40	18	60	0							
			Practical									
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation							
100	50	40	20	60	0							

Part E

Books	P. K. Sinha, Priti Sinha; Computer Fundamentals; BPB Publication. V. Rajaraman; Fundamentals of Computers; Prentice Hall of India Publication. G. G. Wilkinson; Fundamentals of Information Technology; Wiley-Blackwell Publishing. Yashwant P. Kanetkar; Let Us C; BPB Publication.
Articles	
References Books	E. Balagurusamy; Programming in ANSI C; Tata McGraw-Hill Publishing. Ron Mansfield; Working in MS-Office; Tata McGraw Hill Publishing.
MOOC Courses	https://www.my-mooc.com/en/categorie/information-technology
Videos	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	-	-	-	-	-	-	-	-	-	-	-	1	1	2
CO2	1	2	-	-	-	-	-	-	-	-	-	-	3	3	2
CO3	-	-	1	-	-	-	-	-	-	-	-	-	3	2	2
CO4	-	-	-	2	-	-	-	-	-	-	-	-	2	2	2
CO5	-	-	-	-	-	-	-	-	-	-	-	-	2	2	2
CO6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Course Articulation Matrix

(SOET)(BTech-MechanicalEngineering)

Title of the Course	Principles of Electrical Engineering
Course Code	EEL0201[T]

Year	1st	Semester	2nd	Credits	L	Т	Р	С
	ear ist Semester 2nd Credits		2	1	1	4		
Course Type	Embed	ded theory and lab						
Course Category	Founda	ation core						
Pre-Requisite/s	Knowle electro	edge of physics and nics	basic	Co-Requisite/s				
Course Outcomes & Bloom's Level	circuits CO2- F phase / CO3- F phase / CO4- la require applica	 CO1- Predict the behavior of any electrical circuits, Formulate and solve complex DC circuits.(BL1-Remember) CO2- Predict the behavior of any electrical circuits, Formulate and solve complex single phase AC circuits.(BL2-Understand) CO3- Predict the behavior of any electrical circuits, Formulate and solve complex Three phase AC circuits.(BL3-Apply) CO4- Identify the type of electrical machine used for that particular application. Realize the requirement of transformers in transmission and distribution of electric power and other applications.(BL4-Analyze) CO5- Predict the behavior of various measuring instruments in electrical engineering(BL5-Evaluate) 						
Coures Elements	Skill Development ✓ Entrepreneurship × Employability × Professional Ethics × Gender × Human Values × Environment ×						ıre)	

Part B

·

Modules	Contents	Pedagogy	Hours
1	D.C. Circuit: - Combination of resistance in series & parallel, their solution ,Star –Delta combination, KCL and KVL. Voltage and current sources, dependent and independent sources, source conversion, DC circuit's analysis using mesh & nodal method, Superposition theorem.	Lecture with white board, ppt	10
2	Single Phase Circuit:- Generation of Alternating Voltage & Currents, Their Equation, Definition, R.M.S and Average values, Vector representation of alternating quantities, Phasor relations between voltage & current in each of resistance, inductance and capacitance, A.C series circuit power & power factor, Resonance in series circuit.	Lecture with white board, ppt	12
3	Electrical Measuring Instruments:- Introduction and classification of Electrical Instruments, Essentials of indicating instruments, Moving iron instruments, Types ofmoving iron instruments, Advantages and Disadvantages of moving iron instruments, Applications of moving iron equipment, Permanente Magnet type moving coil instruments, extension of range of ammeters and voltmeter, Dynamometer type instruments, Dynamometer type wattmeters	Lecture with white board, ppt	7
4	Poly-phase Circuits:-Generation of Poly- phase Voltages, 3phase system, Phase sequence, Inter connection of 3 phases, Voltage, Currents & Power relationships in balanced 3 phase circuits, Power Measurement in single phase & 3 phase circuits	Lecture with white board, ppt	8
5	Transformer:- Construction & working principle of transformer, Emf equation, No load & Full load phasor diagram , Equivalent circuit, Losses & Efficiency, Voltage Regulation, Open circuit & Short Circuit Test on the Transformer	Lecture with white board, ppt	10

Part D(Marks Distribution)

	Theory								
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation				
100	40	40	12	60					
			Practical						
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation				
100	50	40	20	60					

Part E

Books	Vincent Del Toro, Electrical Engineering Fundamentals, PHI Learning, II Edition
Articles	
References Books	1. Basic Electrical Engg, Sunil S Gaikwad, Dream Tech/ Willey Publication.
MOOC Courses	https://www.coursera.org/courses?query=electrical
Videos	

Course Articulation Matrix

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	2	1	1	-	-	-	-	-	-	-	1	1	2
CO2	1	1	2	1	1	3	-	1	-	-	1	-	2	3	1
CO3	2	1	2	1	2	-	2	-	2	2	-	-	1	2	2
CO4	1	3	1	2	3	I	-	-	-	-	-	-	3	1	3
CO5	1	1	1	2	1	-	-	-	-	-	-	-	2	2	1
CO6	1	1	1	1	1	-	-	-	-	-	-	3	1	3	2

(SOET)(BTech-MechanicalEngineering)

Title of the Course	Environmental Science and Pollution Control
Course Code	ESL0201[T]

Year	1st	Semester	2nd	Credits	L	Т	Р	С			
- Tour	100	00110000	2110	orouto	2	0	2	4			
Course Type	Embeo	Embedded theory and lab									
Course Category	Found	ation core									
Pre-Requisite/s	biodive	Basic knowledge of natural resources, biodiversity, ecological succession, energy flow, environmental issues and problems. Co-Requisite/s of the enviro challed these					A detailed understanding of the complexity of environment and its challenges and solutions to these problems and challenges.				
Course Outcomes & Bloom's Level	environ CO2- (multidi CO3- (analys CO4- (System environ implen CO5- (CO1- CO1. Develop environmental scientists and engineers and sensitize them towards environmental issues. (BL2-Understand) CO2- CO2. To acquire analytical skills in assessing environmental impacts through a multidisciplinary approach(BL3-Apply) CO3- CO3. Ability to distinguish between various methods of various pollution analysis(BL4-Analyze) CO4- CO4.Acquire expertise and skills needed for the Environmental Management Systems and techniques of monitoring, Environment audit, Environmental Impact Analysis, environment instrumentation and control systems and for the projects development, implementation, and maintenance.(BL5-Evaluate) CO5- CO5. Students acquire skills for to communicate, prepare, plan and implement the environmental management project(BL6-Create)									
Coures Elements	Entrep Emplo Profes Gende Humar	evelopment X reneurship X yability √ sional Ethics X r X n Values √ nment √	SDG (Goals)	SDG3(Good health and well-being) SDG6(Clean water and sanitation) SDG7(Affordable and clean energy) SDG13(Climate action) SDG14(Life below water) SDG15(Life on land)							

.

Modules	Contents	Pedagogy	Hours
1 (Environment, Ecosystem and Environmental Education)	Environment – Definition and its segments, (Lithosphere, Hydrosphere, Atmosphere and Biosphere), Multidisciplinary nature of Environmental Science, Ecology and Ecosystem: Basic concepts, functions of ecosystem, Energy Flow, Food chain, food web, Ecological Pyramids, Ecological Successions. Environmental Education- Definition, scope, importance, Need for Public Awareness, Environmental Ethics. Environmental Impact Assessment: Screening, Scoping, Base line Analysis, Impact Mitigation, Documentation, Review, Public hearing, Post Project Monitoring.	Lecture with ppt., Diagrams, Flowchart depiction on whiteboard during online/offline lectures, Audio/Video clips, discussion (questions & answers section)	8
2 (Natural Resources Management)	Natural Resources – Classification, Water Resources (availability, quality, water budget), Mineral Resources (distribution, availability and future perspectives), and Forest Resources. Energy Resources- Classification and alternatives of conventional energy resources- Solar, working of solar photovoltaic cells, Geothermal, Wind energy, Nuclear Energy, Biomass and Bio-gas	Lecture with ppt., Diagrams, Flowchart depiction on whiteboard during online/offline lectures, Audio/Video clips, Group discussion.	8
3 (Water, Soil & Noise Pollution)	Water pollution – sources & effects, characteristics and treatment of waste water, engineered systems for water purification: Aeration, solid separation, settling operations, filtration and disinfection. Soil - formation of soil, elementary and mineral composition, types of soil in India, soil pollution, effects and abatements. Noise Hazards: Continuous and impulse noise, Effect of noise on man, Measurement and evaluation of Noise, noise isolation and absorption techniques, silencers, practical aspects of noise.	Lecture with ppt., Diagrams, Flowchart depiction on whiteboard during online/offline lectures, Audio/Video clips, Group discussion.	8
4 (Atmospheric chemistry and Air Pollution)	Classification, sources and toxic effects of air pollutants, dispersal of air pollutants, engineered systems for air purification: Atmospheric cleansing process, approaches to contamination control. Air pollutants with emphasis on reactive intermediates in atmosphere like hydroxyl radical, ozone and nitrate radical, types of hydrocarbon in the troposphere, reaction of organic compounds in the atmosphere.(Green house gas effect, Global warming, Climate change).	Lecture with ppt., Diagrams, Flowchart depiction on whiteboard during online/offline lectures,Audio/Video clips, Group discussion.	8
5 (Waste Management) ps://prabandh.itmuniversity	Solid waste: Generation and waste characterization. Collection, storage and transport. Waste disposal, waste processing techniques, reduction, reuse and recycling, resource recovery and utilization. Physical and chemical treatment methods and cac.in/exam/syllabusreportcoursewise/	Lecture with ppt., Diagrams, Flowchart depiction on whiteboard during online/offline lectures, Audio/Video clips, Group discussion. Field visits. Industrial Visit (MSW/BMW/STP/ETP)	8

composting. Hazardous waste management
and treatment.

P	ar	t	С

Modules	Title	Indicative-ABCA/PBL/ Experiments/Field work/ Internships	Bloom's Level	Hours
1	To measure the intensity of Noise at different places in the ITM University campus by using Sound Meter.	Experiments	BL4-Analyze	4
2	To analyze the grassland ecosystem and calculate the Important Value Index (IVI) by quadrate method.	Experiments	BL4-Analyze	4
3	To determine the TDS and Conductivity of the given water samples.	Experiments	BL4-Analyze	4
4	To determine the pH of given water and soil samples.	Experiments	BL4-Analyze	4
5	To determine the turbidity of given water samples.	Experiments	BL4-Analyze	4
6	To determine the Total Hardness of a given water sample by a complexometric metho	Experiments	BL4-Analyze	4
7	To determine the Total Hardness of a given water sample by a complexometric method	Experiments	BL4-Analyze	4
8	To find out the amount of Dissolved Oxygen (DO) in the given sample of water.	Experiments	BL4-Analyze	4
9	To find out the amount of Biological Oxygen Demand (BOD) in the given sample of water.	Experiments	BL4-Analyze	4
10	To determine the Alkalinity of the given water sample.	Experiments	BL4-Analyze	4

Part D(Marks Distribution)

			Theory			
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation	
100	40	40	12	60		
			Practical			
Total Minimum Passing Marks Marks		External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation	
100	450	40	20	60		

Dart	
ran	

.

Books	Environmental Science by B. S. Chauhan; Firewall Media, 2008 • Environmental Science by Cuningham and Cuningham; McGraw-Hill Education; 13th edition (16 February 2014) • Environmental Engineering by S. K. Dhameja; S. K. Kataria & Sons, 2009 • Environmental Science by Richard T Wright; Benjamin-Cummings Pub Co.
Articles	
References Books	Environmental Engineering by Howards S Peavy, Donald R Rowe, T. George • Environmental Science & Engineering by Gilbert M. Master • Environmental Chemistry by Stanley
MOOC Courses	https://onlinecourses.swayam2.ac.in/cec21_ge08/preview
Videos	

Course Articulation Matrix

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	-	-	-	2	2	-	-	-	2	-	-	1	-	1
CO2	1	2	1	2	2	2	-	-	-	2	-	-	1	-	3
CO3	2	1	1	-	1	-	-	-	-	-	-	-	3	2	3
CO4	2	2	-	2	1	-	-	-	-	-	-	-	2	3	3
CO5	2	2	-	2	1	-	-	-	-	-	-	-	2	2	3
CO6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

(SOET)(BTech-MechanicalEngineering)

Title of the Course	Statistics for Engineers				
Course Code	MAL0203[T]				

Part A												
Year	1st Semester		2nd	Credits	L	Т	Р	С				
					2	1	1	4				
Course Type	Embeo	Embedded theory and lab										
Course Category	Basic	Basic Sciences and Mathematics										
Pre-Requisite/s	include calculu probat conce Additic tools li	cs for engineers t basic mathemat us), understanding bility theory, and fa bots in engineering bally, knowledge ke MATLAB or Py is is beneficial.	ics (algebra, g of amiliarity with disciplines. of software	Co-Requisite/s	statistics for engineers may include introductory courses in engineering mechanics, computer programming, and experimental methods. Additionally, concurrent enrollment in courses covering linear algebra and differential equations could provide valuable mathematical background for understanding advanced statistical concepts and applications in engineering contexts.							
Course Outcomes & Bloom's Level	 CO1- To remember basic concept of about the design data collection plans and basic tools of descriptive statistics. (BL1-Remember) CO2- To understand the identify relationship between two variables using scatter plot and Interpret a simple correlation. To understand the Knowledge about the different types of continuous distribution with their properties and applications. (BL2-Understand) CO3- To apply the test and make hypothesis by Student's t-test, F-test, chi-square test, Z test, goodness of fit.(BL3-Apply) CO4- To analyze the concept of sampling distribution of a statistic and its properties, difference between parameter and statistic.(BL4-Analyze) CO5- To evaluate and describe the properties of unbiasedness. Also identifying and provide an application the null hypothesis, alternative hypothesis and test statistic.(BL5-Evaluate) 											
Coures Elements	Entrep Emplo Profes Gende Humai	evelopment × reneurship × yability × sional Ethics × er × n Values × nment ×	SDG (Goals)	SDG4(Quality educati	y education)							

•

Modules	Contents	Pedagogy	Hours
1	tInroduction to statistics and data analysis Measures of central tendency, Measures of variability, [Moments, Skewness, Kurtosis (Concepts only)]. Correlation and Regression, Partial and Multiple correlations, Multiple regressions.	lecture with ppt, quiz Audio/Video clips, group discussion,	10
2	Introduction, random variables, Probability mass Function, distribution and density functions, joint Probability distribution and joint density functions, Marginal, conditional distribution and density functions, Mathematical expectation, and its properties Covariance, moment generating function, characteristic function.	lecture with ppt, quiz Audio/Video clips, group discussion	10
3	Binomial and Poisson distributions, Normal distribution, Gamma distribution, Exponential distribution.	lecture with ppt, quiz lecture with ppt, quiz Audio/Video clips, group discussion, classroom presentations, Analysis	6
4	Testing of hypothesis, Introduction, Types of errors, critical region, procedure of testing hypothesis, Large sample tests, Z test for Single Proportion, Difference of Proportion, mean and difference of means.	lecture with ppt, quiz Audio/Video clips, group discussion	8
5	Small sample tests, Student's t-test, F-test, chi-square test, goodness of fit, independence of attributes, Design of Experiments, Analysis of variance, one and two way classifications, CRD, RBD, LSD.	lecture with ppt, quiz Audio/Video clips, group discussion,	10

Part C

Modules	Title	Indicative-ABCA/PBL/ Experiments/Field work/ Internships	Bloom's Level	Hours
1	Introduction: Understanding Data types; importing/exporting data.	Experiments	BL2-Understand	2
2	Computing Summary Statistics/plotting and visualizing data using Tabulation and Graphical Representations.	Experiments	BL3-Apply	2
3	Applying correlation and simple linear regression model to real dataset; Computing and interpreting the coefficient of determination	Experiments	BL3-Apply	2
4	Applying multiple linear regression model to real data set; computing and interpreting the multiple coefficient of determination	Experiments	BL3-Apply	2
5	Fitting the following probability distributions: Binomial distribution,	Experiments	BL3-Apply	2
6	Normal distribution Poisson distribution	Experiments	BL3-Apply	2
7	Testing of hypothesis for One sample mean and proportion from real, time problems	Experiments	BL3-Apply	2
8	Testing of hypothesis for Two sample mean and proportion from real, time problems	Experiments	BL3-Apply	2

Part D(Marks Distribution)

			Theory		
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation
100	40	40	12	60	
			Practical		
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation
100	50	40	20	60	

Part E

.

Books	M. Ray, H.S. Sharma, Sanjay Chaudhary Mathematical Statistics Ram Prasad & Sons J.N. Sharma, J.K. Goyal Mathematical Statistics Krishna Prakash and Media (P) Ltd
Articles	
References Books	E.Kreyszig Advanced Engineering Mathematics 8 th Ed., John Wiley and Sons, 1999 B.V. Ramana Higher Engineering Mathematics Tata McGraw Hill B. S. Grewal Higher Engineering Mathematics Khanna Publishers
MOOC Courses	https://onlinecourses.nptel.ac.in/noc24_ec03/preview
Videos	https://onlinecourses.nptel.ac.in/noc24_ec03/preview

Course Articulation Matrix

								liouiu							
COs	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	-	-	-	2	2	-	1	-	-	-	-	1	-	1
CO2	3	3	1	3	3	2	-	1	-	1	-	-	2	-	2
CO3	3	2	-	1	3	-	I	I	-	-	-	-	1	3	2
CO4	3	2	-	2	-	-	-	-	-	-	-	-	-	3	1
CO5	2	2	-	1	-	-	-	-	-	-	-	-	-	2	-
CO6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

(SOET)(BTech-MechanicalEngineering)

Title of the Course	Engineering Graphics
Course Code	MEL0202[T]

Year	1st	Semester	2nd	Credits	L 2	T 1	P 1	C 4
Course Type	Embedde	nbedded theory and lab						
Course Category	Discipline	e Core						
Pre-Requisite/s		owledge of geometrical g, imagination etc.	construction,	Co-Requisite/s				
Course Outcomes & Bloom's Level	application CO2- To (BL2-Un CO3- To dataset. CO4- To Analyze CO5- To	CO1- To get the fundamentals of engineering graphics, geometrical construction and its applications. (BL1-Remember) CO2- To understand the basic concept of engineering graphics through real-life examples. (BL2-Understand) CO3- To implement the different engineering graphics concepts over appropriate drawing dataset. (BL3-Apply) CO4- To analyze the drawing performance of engineering graphics techniques. (BL4-Analyze) CO5- To evaluate the drawing performance of engineering graphics techniques on a corresponding object. (BL5-Evaluate)						
Coures Elements	Skill Development ✓ Entrepreneurship × Employability × Professional Ethics × Gender × Human Values × Environment ×SDG (Goals)SDG4(Qu		SDG4(Quality education	on)				

·

Modules	Contents	Pedagogy	Hours
Unit-1	1. Drafting tools, 2. Principles of Graphics, 3. Geometrical constructions 4. Scales: Plain, diagonal, 5. Curves used in engineering practice: such as ellipse, parabola, hyperbola by different methods. Cycloidal curves, Involutes and Spirals.	Lecture with Whiteboard, PPT	8
Unit-2	 Orthographic projections. Projections of points in different quadrants. Determination of shortest distance from reference line. Projections of lines by different methods such as a) Rotating line method & b) Rotating trapezoidal plane methods. Projections of planes: Perpendicular plane, oblique plane and Auxiliary plane and traces of planes. 	Lecture with Whiteboard, PPT	9
Unit-3	Projection of solids: Polyhedron and solids of revolution, projection of solids with inclined to one or both the reference planes.	Lecture with Whiteboard, PPT	6
Unit-4	Sections of solids: true shapes of section, section of prisms, pyramids, cylinder, cone & spheres. Development of surfaces: For right and oblique solids.	Lecture with Whiteboard, PPT	6
Unit-5	Isometric projection: Isometric scale, isometric projections of prisms, pyramids, cylinders cones, spheres and combination of two or three solids. Intersection of surfaces: intersection of surfaces intersection of cylinder to cylinder, cylinder and cone, prism & prism.	Lecture with Whiteboard, PPT	5

Unit-6 Unit-6 Computer Aided Drafting Introduction, benefit, so commands of drafting circle, polygon, polyher transformations and eo like move, rotate, mirro	oftware's basic entities like line, dron, cylinders; liting commands	ard, PPT 4
--	---	------------

Part C

Modules	Title	Indicative-ABCA/PBL/ Experiments/Field work/ Internships	Bloom's Level	Hours
Experiment -1	Drawing sheet of plane scale.	Experiments	BL3-Apply	2
Experiment -2	Drawing sheet of diagonal scale.	PBL	BL3-Apply	2
Experiment -3	Drawing sheet of ellipse.	PBL	BL3-Apply	2
Experiment -4	Drawing sheet parabola and hyperbola	PBL	BL3-Apply	2
Experiment -5	Drawing sheet of cycloidal curves.	PBL	BL3-Apply	2
Experiment -6	Drawing sheet of orthographic projection	PBL	BL3-Apply	2
Experiment -7	Drawing sheet of projection of line		BL3-Apply	2
Experiment -8	Drawing sheet of projection of plane.		BL2- Understand	2

Part D(Marks Distribution)

			Theory		
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation
100	40	40	12	60	
			Practical		
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation
100	50	40	20	60	

Part E

Books	1. N.D.Bhatt Elementary of Enginnering Drawing Charotar Publication P.S. Gill Engineering Drawing Kataria Publication Agrawal and Agrawal Engineering Drawing TMH
Articles	
References Books	Venu Gopal K Engineering Drawing New age K.L. Narayana& P. Kannaiah Engineering Drawing SCITECH Pub.
MOOC Courses	https://nptel.ac.in/courses/112103019
Videos	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	-	-	-	2	2	-	-	3	3	-	-	3	-	2
CO2	2	-	2	2	1	2	-	-	3	3	-	-	3	2	2
CO3	-	-	2	1	1	-	-	-	2	1	-	-	3	2	2
CO4	-	1	2	3	1	-	-	-	-	-	-	-	3	-	2
CO5	-	1	1	2	1	-	-	-	-	-	-	-	3	-	2
CO6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Course Articulation Matrix

(SOET)(BTech-MechanicalEngineering)

Title of the Course	Manufacturing Technology-I
Course Code	MEL0204[T]

Year	1st	Semester 2nd Credits		L	Т	Ρ	С	
i cai	131	Gemester	2110	oreans	2	1	0	3
Course Type	Embedd	ed theory and lab						
Course Category	Disciplin	e Core						
Pre-Requisite/s	Basic knowledge of properties of Materials, types of manufacturing process, gravity motion and concepts of force, Pascal's law, surface tension capillarity							
Course Outcomes & Bloom's Level	CO2- To CO3- To casting.(CO4- To CO5- To	describe the basic con implement basic know BL3-Apply) analyze the welding ar	cept of casting and ledge in analyzing t nd casting processe	terial science.(BL1-Rem welding processes(BL2 he forces and processes s(BL4-Analyze) ptimizing the casting and	S of N	ders weldi	ng ai	
Coures Elements	Entrepre Employa	onal Ethics X X /alues X	SDG (Goals)	SDG9(Industry Innovation and Infrastructure)				

Part B

.

Modules	Contents	Pedagogy	Hours
Unit-1	Introduction of Engineering Mechanics Basic concepts of system of forces- Coplanar Concurrent Forces - Components in Space – Resultant Moment of Forces and its Application - Couples and Resultant of Force System - Equilibrium of System of Forces- Free body diagrams- Equations of Equilibrium of Coplanar Systems and Spatial Systems.	Lectures with whiteboard and PPT,Report writing	8
Unit-2	Casting Processes: Sand castings, pressure die casting, permanent mould casting, centrifugal casting, precision investment casting, shell Moulding, CO2 Moulding, electro slag casting, Fettling and finishing, defects in Castings, Casting of non-ferrous materials. Melting and Pouring: Melting furnaces- crucibles oil fired furnaces, electric furnaces, cupola furnace, selection of furnace.	Lectures with whiteboard and PPT,Quiz, Seminar, Poster	8
Unit-3	Basic Joining process- Types of welding-gas welding, -arc welding,-shielded metal arc welding, GTAW, GMAW, SAW, ESW- Resistance welding (spot, seam, projection, percussion, flash types)-atomic hydrogen arc welding-thermit welding.	Lectures with whiteboard and PPT,Quiz, Report writing	8
Unit-4	Welding Process-Special Welding Processes: Soldering, brazing and their applications, welding of special materials– Stainless steel, Aluminium etc. weldability of cast iron, steel, stainless steel, aluminium alloys. Introduction to Electron beam and Laser welding, Flame cutting - Use of Oxyacetylene, modern cutting processes, arc cutting, Pre welding and post welding.	Lectures with whiteboard and PPT,Abstract of research paper	8
Unit-5	Design of Weldments: Welding symbols, Positions of welding, joint and groove design, heat input, effect of welding parameters, preheating and post heating, Selection of electrodes, flux etc. Weldments Testing: Inspection of welds – destructive and non- destructive testing methods, Defects in welding, causes and remedies.	Lectures with whiteboard and PPT,Quiz, Case writing, seminar	8

.

Modules	Title	Indicative-ABCA/PBL/ Experiments/Field work/ Internships	Bloom's Level	Hours
Module-I	Pattern design and making –for one casting drawing.	PBL		
Module-II	Sand properties testing exercise for strengths and permeability	Industrial Visit		
Module-III	Moulding melting and casting process	Experiments		
Module-IV	Arc welding- lap & butt joint preparation.	Experiments		
Module-V	To prepare spot welding joint.	Experiments		
Module-VI	To perform TIG welding.	Experiments		
Module-VII	To perform Plasma welding and brazing process	Industrial Visit		

Part D(Marks Distribution)

	Theory								
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation				
100	40	40	12	60					
	•		Practical						
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation				
100	50	40	20	60					

Part E

Books	• P N Rao, Manufacturing Technology, McGraw Hill. • M. P. Groover, Fundamental of modern manufacturing: Materials, Processes and System, John Wiley and Sons
Articles	
References Books	• P C Pandey "Production Engineering Science" Standard publishers • Richard L. Little "Welding& Welding Technology" Tata McGraw Hill
MOOC Courses	https://www.mooc-list.com/tags/manufacturing
Videos	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	1	-	-	3	3	1	1	1	3	3	1	1	1
CO2	3	3	3	2	2	3	3	-	1	1	3	3	1	1	1
CO3	3	3	3	2	2	3	3	-	-	-	3	3	2	2	2
CO4	3	3	3	2	2	3	3	2	2	2	3	3	3	3	3
CO5	3	3	3	2	3	3	2	2	2	3	3	3	3	3	3
CO6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Course Articulation Matrix

.

3/10/25, 1:48 PM

-

(SOET)(BTech-MechanicalEngineering)

Title of the Course	Evaluation of Industrial Training-1
Course Code	MEC0301[P]

Part A

		-	FaitA	-				
Year	2nd	Semester	3rd	Credits	L	Т	Р	С
	2110	Comotor	r 3rd Credits		0	0	2	2
Course Type	Lab only	/						
Course Category	Projects	and Internship						
Pre-Requisite/s	-	subject knowledge of first and second semester . Co-Requisite/s						
Course Outcomes & Bloom's Level	since of CO2- Id solving. CO3- Ut problem CO4- De acquire CO5- De	social and civic an entify the needs an (BL2-Understand tilize their knowledg (BL3-Apply) evelop the confider leader ship qualitie	d responsibility. (id problem of the) ge in finding prac nee require for gr s and democration to meet emerge	their community and de (BL2-Understand) community and involve tical solution to individu oup living and sharing o c attitudes. (BL4-Analy ncies and natural disas ate)	e them al and of resp ze)	in prot comm onsibili	olem unity ities of	
Coures Elements	Entrepre Employa Professi Gender	onal Ethics X X Values X	SDG (Goals)	SDG9(Industry Innova	ation a	nd Infra	astruct	ure)

Part B

Modules Contents	Pedagogy	Hours
------------------	----------	-------

Modules	Title	Indicative-ABCA/PBL/ Experiments/Field work/ Internships	Bloom's Level	Hours
Module-I	Industrial training has its own importance in a career of a student who is pursuing a professional degree. It is considered as a part of college curriculum. The objective of an industrial training is to provide us an insight regarding internal working of companies. We understand that theoretical knowledge is not enough for a successful professional career. With an aim to go beyond academics, industrial visit provides students a practical perspective of the work place. Industrial trainings provide an opportunity to learn practically through interaction, working methods and employment practices.	Field work	BL3-Apply	40 hrs
Module-II	It gives students an exposure to current work practices as opposed to possibly theoretical knowledge being taught at college. Industrial visits provide an excellent opportunity to interact with industries and know more about industrial environment. Industrial trainings are arranged by TAP cell with an objective of providing us an opportunity to explore different sectors like IT, Manufacturing services, finance and marketing. Industrial visit helps to combine theoretical knowledge with practical knowledge. Industrial realities are opened to the students through industrial visits/trainings.	Field work	BL4-Analyze	40 hrs

Part D(Marks Distribution)

	Theory									
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation					
	50									
			Practical							
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation					
100	50	40	20	60						

.

Books	
Articles	
References Books	
MOOC Courses	
Videos	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2-	-	1	-	-	-	-	-	-	-	2	2	2
CO2	1	-	2-	-	2	-	-	-	-	-	-	-	1	2	1
CO3	1	2	-	2	1	-	-	-	-	-	-	-	2	2	1
CO4	1	1	-	2	-	-	-	-	1	-	-	-	2	2	1
CO5	-	-	-	-	1	-	-	-	-	1	-	-	2	1	1
CO6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Course Articulation Matrix

(SOET)(BTech-MechanicalEngineering)

Title of the Course	Material Science
Course Code	MEL0304[T]

						1							
Year	2nd	Semester	3rd	Credits	L	Т	Р	С					
					2	1	0	3					
Course Type	Theory o	Theory only											
Course Category	Discipline	iscipline Core											
Pre-Requisite/s	subsume	The field of materials science is broad and subsumes aspects of physics, chemistry, nechanics, and more.											
Course Outcomes & Bloom's Level	CO2- Uni properties CO3- To CO4- To alloy.(BL CO5- To	 CO1- Recall the crystal structure and classification of materials(BL1-Remember) CO2- Understating the concept of advanced finishing processes, understand mechanical properties and their application.(BL2-Understand) CO3- To implement the phase diagram of materials(BL3-Apply) CO4- To analyze the heat treatment process to achieve desired properties of metals and illoy.(BL4-Analyze) CO5- To evaluate type of materials that are used in engineering with special emphasis on teel/ ferrous materials(BL5-Evaluate) 											
Coures Elements	Skill Development ✓ Entrepreneurship × Employability × Professional Ethics × Gender × Human Values × Environment ×SDG (Goals)			SDG9(Industry Innova Infrastructure)	ition	and							

Part B	
--------	--

-

Modules	Contents	Pedagogy	Hours
Unit-1	Introduction, Atomic models, Chemical bonding, Crystallography and Imperfections, Concept of unit cell, Space lattice, Crystal lattices, Common crystal structures, Atomic packing factor and density, Miller indices, Defects & imperfections in solids. Mechanical Properties: Stress-Strain Diagram, Ductile & Brittle Material, Strength, Toughness, Hardness, Fracture, Fatigue and Creep.	Lectures with whiteboard and PPT,Report writing	8
Unit-2	Plastic Deformation of Metals: Hot working, Cold working, Re-crystallization & grain growth. Phase Diagram and Equilibrium Diagram: Unary and Binary diagrams, Phase rules. Types of equilibrium diagrams, Iron-carbon equilibrium diagram, Solid solutions, eutectic and combination type.	Lectures with whiteboard and PPT,Quiz, Seminar, Poster	8
Unit-3	Ferrous Materials: Various types of carbon steels, alloy steels and cast irons, its properties and uses. Heat Treatment: Various types of heat treatment such as Annealing, Normalizing, Quenching, Tempering and Case hardening. Time Temperature Transformation (TTT) diagrams.	Lectures with whiteboard and PPT,Quiz, Report writing	8
Unit-4	Non-Ferrous metals and alloys such as Cu, Al, Zn, Cr, Ni, etc. and their applications. Various types: Brass, Bronze, bearing materials, its properties and uses. Aluminum alloys such as Duralumin. Ceramics: Structure types and properties and applications of ceramics.	Lectures with whiteboard and PPT,Abstract of research paper	8
Unit-5	True stress-strain, elastic recovery and plastic deformation. Strain Quiz, Case writing, seminar hardening, recovery, recrystallization, grain growth. Powder metallurgy: introductory concept & processes.	Lectures with whiteboard and PPT,Quiz, Case writing, seminar	8

Part D(Marks Distribution)

			Theory			
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation	
100	40	40	12	60		
			Practical			
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation	
	0	0				

Part E

Books	Material Science & Processes, Media Promoters & Publishers Narula - Material Science, TMH
Articles	
References Books	1. W. D. Callister, Jr, - Material Science & Engineering Addition, Wiley Publishing Co. 2. Van Vlash - Elements of Material Science & Engineering, John Wiley & Sons. 3. V. Raghvan - Material Science, Prentice Hall of India 4. Srivastava & Srinivasan - Science of Materials Engineering, New Age Publishers
MOOC Courses	https://archive.nptel.ac.in/courses/113/102/113102080/
Videos	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	-	-	-	2	2	-	-	3	3	-	-	3	2	2
CO2	3	1	2	2	2	2	2	1	3	3	1	-	3	3	3
CO3	-	1	3	2	-	2	2	2	-	-	-	3	3	3	2
CO4	I	2	1	3	2	I	I	1	-	-	2	1	2	-	2
CO5	-	-	-	-	-	3	-	-	-	-	2	-	1	-	3
CO6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Course Articulation Matrix

(SOET)(BTech-MechanicalEngineering)

Title of the Course	Basic Thermodynamics
Course Code	MEL0305[T]

					L	Т	Ρ	С
Year	2nd Semester		3rd	Credits		1	1	4
Course Type	Embedde	d theory and lab						
Course Category	Discipline	Core						
Pre-Requisite/s	An introdu and calcu	ictory background in ch lus	nemistry, physics,	Co-Requisite/s				
Course Outcomes & Bloom's Level	CO2- To u CO3- To a CO4- To a	ecall the energy and its inderstand energy cons apply the oncept of ene analyze power producir evaluate model for optir	servation techniques(I rgy transformation in I ng devices(BL4-Analy	BL2-Understand) heat and work systems(/ze)	(BL3	8-Ap	ply)
Coures Elements	Entrepren Employab	nal Ethics X alues X	SDG (Goals)					

.

Modules	Contents	Pedagogy	Hours
1	Thermodynamics, Property, Equilibrium, State, Process, Cycle, Zeroth law of thermodynamics, statement and significance, concept of an Ideal gas,, Gas laws, Avogadro's hypothesis, Real gas, Deviation with ideal gas. Vander-wall's equation, evaluation of its constants, limitations of the equat. The law of corresponding states, Compressibility factor,generalized compressibility chart, P-V- T surface of a Real gas.	Lectures with whiteboard/PPT, Quiz, Group discussion	10
2	Pure Substance, Phase, Phase- transformations formation of steam, properties of steam, PVT surface HS, TS, PV, PH, TV diagram, measurement of dryness fraction of vapor.Use of steam table and Mollier chart, Gibbs and Helmholtz functions	Lectures with whiteboard/PPT, Quiz, Group discussion	10
3	First law of thermodynamics, Statement of first law of thermodynamics first law applied to closed system,, first law applied to a closed system undergoing a cycle processes analysis of closed system, flow process, flow energy,steady flow process, Relations for flow processes, limitations of first law of thermodynamics	Lectures with whiteboard/PPT, Quiz, Group discussion	8
4	Second law of thermodynamics, heat engine, heat reservoir Refrigerator, heat pump, COP, EPR, Available energy, Carnot's theorem, Carnot's cycle, efficiency of Carnot's cycle,statement of second law, Reversible and irreversible processes, consequence of second law, Entropy, Entropy change for ideal gas, T- S diagrams, Availability and Irreversibility, exergy, Gibbs and Helmholtz functions, Entropy of universe	Lectures with whiteboard/PPT, Quiz, Group discussion	8
5	Air standard cycles,Otto, Diesel, Dual cycles and their comparison, MEP and Efficiency, Brayton cycle, Vapor power cycles Power generation by steam, Carnot cycle, Rankin cycle, reheat & regenerative cycles	Lectures with whiteboard/PPT, Quiz, Group discussion	6

Do	rt	\mathbf{c}
гa	IL	C

Modules	Title	Indicative-ABCA/PBL/ Experiments/Field work/ Internships	Bloom's Level	Hours
1	To Study of part of engine	Experiments	BL2-Understand	03
2	To study the construction and working of 2 stroke petrol engines	Experiments	BL2-Understand	03
3	To study the construction and working of 2 stroke diesel engines	Experiments	BL3-Apply	03
4	To study the construction and working of 4 stroke petrol engines	Experiments	BL4-Analyze	03
5	To study the construction and working of 4 stroke diesel engines	Experiments	BL2-Understand	03
6	To study of reciprocating pump	Experiments	BL3-Apply	03
7	To study of centrifugal pump	Experiments	BL3-Apply	03
8	To study the working of Vapor compression refrigeration test rig	Experiments	BL2-Understand	03

Part D(Marks Distribution)

	Theory											
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation							
100	40	40	12	60								
			Practical									
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation							
100	50	40	20	60								

Part E

Books	1. P. K. Nag Engineering Thermodynamics, TMH 4thEdition 2 D. S. Kumar Thermal Science & Engineering 5th Edition 3 Onkar Singh Applied Thermodynamics by New Age
Articles	
References Books	1 R. E. Sonntag, C. Borgnakke, and G.J. Van Wyle Fundamentals of Thermodynamics 5thEdition 2 Arora C. P Thermodynamics, TMH 1stEdition 3 Yunus A. Ceingel, Michael A. Boles Thermodynamics" TMH 5thEdition
MOOC Courses	https://www.coursera.org/courses?query=thermodynamics
Videos	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	-	-	-	2	2	-	-	3	3	-	-	3	2	2
CO2	3	1	2	1	1	2	2	1	2	3	1	-	3	3	3
CO3	-	1	3	2	1	2	2	2	-	1	-	3	3	3	2
CO4	1	2	2	3	2	-	-	2	-	-	2	1	3	2	2
CO5	-	-	-	-	1	2	-	-	-	-	2	-	3	-	3
CO6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Course Articulation Matrix

.

(SOET)(BTech-MechanicalEngineering)

Title of the Course	Measurement and Metrology
Course Code	MEL 0308[T]

Year	2nd	Semester	3rd	Credits	L	Т	Ρ	С				
Tear	2110	Jemester	510	Creatta	2	1	1	4				
Course Type	Embeddeo	theory and lab										
Course Category	Discipline	sipline Core										
Pre-Requisite/s	particularly concepts s familiarity	algebra and geometry such as mechanics and with instrumentation ar	erstanding of mathematics, ra and geometry, basic physics mechanics and thermodynamics, strumentation and data analysis a grasp of engineering principles.									
Course Outcomes & Bloom's Level	measurem CO2- To u CO3- To a and strain CO4- To a	nent, characteristics of inderstand the concept pply the measurement in equipments(BL3-Ap nalyze the error in mea	instruments(BL1-Rer of generalized measured of mechanical param oply) asurement system an	e of applied physics, i.e. nember) urement system (BL2-U neter such as pressure, f d tolerance (BL4-Analyz ular measurement. (BL5)	nde force ze)	rsta e, to	nd) orqu					
Coures Elements	Skill Deve Entreprend Employab Professior Gender X Human Va Environme	eurship X liity √ nal Ethics X lues X	SDG (Goals)									

.

Modules	Contents	Pedagogy	Hours
Unit -1	Measurement and measuring instruments, generalized measuring system and functional elements, units of measurement, static and dynamic performance characteristics of measurement devices, calibration, concept of error, sources of error, statistical analysis, estimation of uncertainty; types of sensors, types of transducers and their characteristics.	Lecture with white board/PPT, Audio/Video clips, group discussion, Physical model, quiz	8
Unit -2	Measurement of linear and angular displacement; measurement of pressure - introduction of pressure gauge, gravitational, directing acting, elastic and indirect type pressure transducers; measurement of temperature – thermometers, thermocouples, RTDs, thermistors, pyrometers; measurement of strain – strain gauges principles, strain gauge circuit, measurement of force and torque	Lecture with white board/PPT, Audio/Video clips, group discussio, Review Analysis	8
Unit -3	Metrology and Inspection: Standards of linear measurement, line and end standards, limit fits and tolerances. Linear and angular measurement devices, Limit gauges classification, Taylor's principle of gauge design.	Lecture with white board/PPT, Audio/Video clips, group discussion, , classroom presentations	8
Unit -4	Measurement of geometric forms: Straightness, flatness, roundness, tool maker's microscope, profile project autocollimator, Interferometry - principle and use, Michelson interferometer optical flat.	Lecture with white board/PPT, Audio/Video clips, group discussion, quiz	8
Unit -5	Measurement of screw threads and gears: Surface texture - quantitative evaluation of surface roughness and its measurements, dimensional inspection-tolerance, detail of mechanical comparators, feature inspection	Lecture with white board/PPT, Audio/Video clips, group discussion, quiz	8

Modules	Title	Indicative-ABCA/PBL/ Experiments/Field work/ Internships	Bloom's Level	Hours
Experiment -1	MEASUREMENT WITH SCALE AND VERNIER CALIPERS	Experiments	BL3-Apply	2
Experiment -2	MEASUREMENT WITH MICROMETERS	Experiments	BL3-Apply	2
Experiment -3	STUDY AND USE OF SLIP GAUGES	Experiments	BL2- Understand	2
Experiment -4	MEASUREMENT OF ANGLE WITH SINE BAR AND HEIGHT GAUGE	Experiments	BL4-Analyze	2
Experiment -5	STUDY OF INSPECTION GAUGES SUCH AS PLUG, SNAP, AND THREAD GAUGES	Experiments	BL2- Understand	2
Experiment -6	MEASUREMENT OF ANGLES WITH BEVEL PROTRACTOR	Experiments	BL3-Apply	2
Experiment -7	MEASUREMENT WITH COMBINATION SET	Experiments	BL3-Apply	2
Experiment -8	MEASUREMENT WITH DIAL INDICATOR USING SURFACE PLATE AND ACCESSORIES	Experiments	BL4-Analyze	2

Part D(Marks Distribution)

	Theory											
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation							
100	40	40	12	60								
	-		Practical									
Total Minimum Passing Marks Marks		External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation							
100	50	40	20	60								

 Books
 Kumar, D. S. (2012). Mechanical Measurements & Control. New Delhi: Metropolitan
Publications.
Raghavendra, N. S. (2018). Metrology and Measurements. Pearson Education India.

 Articles
 Sawhney, A. K. (1994). Mechanical Measurements & Instrumentation. New Delhi: Dhanpat
Rai & Sons.
Hume, D. R., & Hume, E. (2015). Metrology and Measurement. CRC Press.

 MOOC Courses
 https://archive.nptel.ac.in/courses/112/106/112106138/

 Videos
 Videos

Course Articulation Matrix

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	-	-	-	2	2	-	-	3	3	-	-	3	2	2
CO2	3	1	2	2	2	2	2	1	3	3	1	-	3	3	3
CO3	1	2	3	2	1	2	2	2	2	1	-	3	3	3	2
CO4	1	3	3	3	2	-	3	2	-	-	2	2	3	2	2
CO5	-	2	2	2	2	3	3	-	-	-	2	-	3	-	3
CO6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Part E

(SOET)(BTech-MechanicalEngineering)

Title of the Course	Mechanics of Solids
Course Code	MEL 0310[T]

Veer	2nd Semester		Ord	Quadita	L	Т	Ρ	С
Year	200	Semester	3rd	Credits	2	1	1	4
Course Type	Embedde	d theory and lab						
Course Category	Discipline	Core						
Pre-Requisite/s	member, member a	complete description of the geometry of the ember, its constraints, the loads applied to the ember and the properties of the material of nich the member is composed.						
Course Outcomes & Bloom's Level	CO2- To u CO3- To a CO4- To a	understand the rigid ar apply the concept of er analyze the deformatic	nd deformed bodies ingineering to calcula in of body under act	ineering mechanics (BL (BL2-Understand) ate stress strain value(B ion of force(BL4-Analy: ponent/material.(BL5-E	L3-A ze)	Appl	y)	r)
Coures Elements	Entreprer Employat	nal Ethics X alues X	SDG (Goals)	SDG9(Industry Innovation and Infrastructure)				

·

Modules	Contents	Pedagogy	Hours
1	Introduction: Stress and strain; normal, shear and bearing stresses; normal and shear strain, modulus of Elasticity, Poisson's ratio, Elastic and Bulk modulus, relation between elastic constants, deformation of axial members, tensile tests for ductile and brittle materials, yield strength, yield criteria, ultimate strength, factor of safety, mechanical properties, temperature stresses in simple and composite members.	Lecture with white board and PPT, Quiz, Seminar, Poster	10
2	Strain energy due to axially applied loads (gradual, sudden and impact loads). State of stress, Generalized Hook's Law, stress transformation, principal planes, principal stresses and strains, maximum shear stress, Mohr's Circle representation for stress and strains	Lecture with white board and PPT,Quiz, Seminar, Poster	10
3	Theories of failures and its assumptions. Bending of beams: Pure bending, bending of beams with symmetric cross section, composite cross sections, shear stress in beams, deflection in beams by different methods for various boundary conditions	Lecture with white board and PPT,Quiz, Seminar, Poster	8
4	Torsion of Shafts: Torsional Moment Diagram, torsion formula for solid and hollow shafts, maximum normal and shear stress, angle of twist, combined effect of axial load, bending moment and torsional moment on circular shafts. Elastic Stability: Euler buckling, equivalent length, Rankine formula, eccentric loading.	Lecture with white board and PPT,Quiz, Case writing, seminar	8
5	Pressure Vessels: Thin and Thick walled pressure vessels; radial, axial and circumferential stresses, maximum shear stress, volumetric strain. Curved Beams: beams with large initial curvature, position of neutral axis for circular, rectangular, and trapezoidal cross sections, crane hook.	Lecture with white board and PPT,Quiz, Case writing, seminar	8

Modules	Title	Indicative-ABCA/PBL/ Experiments/Field work/ Internships	Bloom's Level	Hours
1	To study the mechanical Properties of metals	Experiments	BL2-Understand	03
2	To perform torsion test on mild steel rod	Experiments	BL3-Apply	03
3	To determined impact strength of steel (charpy test)	Experiments	BL4-Analyze	03
4	To determined impact strength of steel (izod test)	Experiments	BL3-Apply	03
5	To determine brinell hardness numbers for mild steel	Experiments	BL4-Analyze	03
6	To determine the rock well hardness numbers for steel	Experiments	BL5-Evaluate	03
7	To determine the tensile strength of mild steel	Experiments	BL6-Create	03
8	Analysis of simply supported beam with ANSYS	Experiments	BL6-Create	03

Part D(Marks Distribution)

	Theory								
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation				
100	40	40	12	60					
			Practical						
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation				
100	50	40	20	60					

	Part E
Books	Timushenko. S. P. and Young, Strength of Material, East-West Press. Beer, Johnston & Dewolf, Mechanics of Materials, Tata McGraw-Hill Education R K Bansal, Strength of Material, Laxmi Publication
Articles	
References Books	A. Pytel, and J Kiusalaas, Mechanics of Materials, CENGAGE Learning, 2012 G.H. Ryder, Strength of Materials, MACMILAN, 1969 Popov, Strength of Materials, PHI, New Delhi. Crandell, Dhal and Lardner, Introduction to Mechanics of Solids, McGraw Hill
MOOC Courses	https://www.coursera.org/courses?query=mechanics%20of%20materials
Videos	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	-	-	-	-	2	-	-	3	3	-	-	3	2	3
CO2	3	1	2	2	2	2	2	1	3	3	1	-	3	3	3
CO3	-	1	2	2	-	2	2	-	-	2	-	3	3	3	3
CO4	1	2	2	2	2	-	2	2	-	-	2	1	3	2	3
CO5	-	-	-	1	1	3	-	-	-	-	2	-	3	-	3
CO6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Course Articulation Matrix

(SOET)(BTech-MechanicalEngineering)

Title of the Course	Manufacturing Technology –II
Course Code	MEL 0341[T]

Year	2nd	Semester	3rd	Credits	L	Т	Р	С	
i cui	2110	bennester	514	oreans	2	1	1	4	
Course Type	Embedd	ed theory and lab							
Course Category	Disciplin	e Core							
Pre-Requisite/s		Basic knowledge of Material science and manufacturing process.							
Course Outcomes & Bloom's Level	CO2- To CO3- To CO4- To	CO1- To get the fundamentals of various metal forming operations.(BL1-Remember) CO2- To understand the mechanism of metal forming.(BL2-Understand) CO3- To implement the different metal forming operations to deform the parts.(BL3-Apply) CO4- To analyze the different parameters used in metal forming.(BL4-Analyze) CO5- To evaluate different forces which act during the operations.(BL5-Evaluate)							
Coures Elements	Entrepre Employa Professi Gender	onal Ethics X X Values X	SDG (Goals)	SDG9(Industry Innovation and					

.

Modules	Contents	Pedagogy	Hours
Unit 1	Fundamentals of Metal Forming Importance of manufacturing, Materials and their structures, Mechanical behavior of crystalline materials, elastic and plastic deformation, yield criteria, Concept of flow stress, hot working and cold working, Metallurgical aspects of metal forming, effects of temperature, classification of metal forming processes,	Lectures with whiteboard/PPT , Quiz, Group discussion	8
Unit 2	Forging: Forging principle, classification, equipment, tooling-processes, Forging operations, post forging heat treatment forging defects & applications, Forgeability, Comparison of forging with other manufacturing processes. Rolling: Scope and importance of rolling, Principles of rolling processes, classification, types of rolling mills, analysis of rolling load, torque and power, Form rolling, rolling defects, causes and remedies.	Lectures with whiteboard/PPT , Quiz, Group discussion	9
Unit 3	Extrusion and Drawing: Classification of extrusion processes, tool, equipment, and principle of these processes, Extrusion dies, Extrusion load analysis, defects and remedies, rod/wire drawing, tool, equipment and principle of processes, defects, Tube drawing and sinking processes.	Lectures with whiteboard/PPT , Quiz, Group discussion	7
Unit 4	Sheet metal forming: Presses and their classification, die and punch assembly and press work methods and process, formability of sheet metals- principle, process parameters, equipment and application of the following processes: deep drawing, spinning, stretch forming. cutting/punching mechanism, blanking versus piercing, compound and progressive die, coining, embossing etc.	Lectures with whiteboard/PPT , Quiz, Group discussion	6
Unit 5	Powder Metallurgy Powder metallurgy manufacturing process, preparation of powders, types & function of binders, green compaction, sintering process and its effect on the product, advantages and application of powder metallurgy products.	Lectures with whiteboard/PPT , Quiz, Group discussion	6
	Jigs and fixtures: locating and clamping devices, principles of jigs and fixtures,		

classification and application.

Modules	Title	Indicative-ABCA/PBL/ Experiments/Field work/ Internships	Bloom's Level	Hours
Experiment 1	To study of forging process.	Experiments	BL2- Understand	2
Experiment 2	To perform the forging operations.	Experiments	BL5-Evaluate	2
Experiment 3	To study of hammer forging.	Experiments	BL2- Understand	2
Experiment 4	To study of rolling process.	Experiments	BL2- Understand	2
Experiment 5	To study of extrusion and drawing process.	Experiments	BL2- Understand	2
Experiment 6	To study of sheet metal working.	Experiments	BL2- Understand	2
Experiment 7	To perform the sheet metal forming operations.	Experiments	BL5-Evaluate	2
Experiment 8	To making a tray from the given sheet metal.	Experiments	BL5-Evaluate	2

Part C

Part D(Marks Distribution)

	Theory								
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation				
100	40	40	12	60					
			Practical						
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation				
100	50	40	20	60					

Part E							
Books	Ghosh and Mallick Manufacturing Science East West Press, 2010 R. K. Jain Production Technology Khanna Publishers, 2001						
Articles							
References Books	P. C. Pandey Production Engineering Science Standard Publishers, 2010 P. N. Rao Manufacturing Technology Mc Graw Hill, 2001 P M Groover Fundamental of modern manufacturing: Materials, Processes, and System John Wiley and Sons, 2010						
MOOC Courses	https://www.mooc-list.com/tags/manufacturing						
Videos							

Course Articulation Matrix

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	-	2	2	2	2	2	3	3	3	-	-	3	3	3
CO2	3	-	2	2	-	2	2	-	1	3	-	-	3	3	3
CO3	3	2	2	2	1	2	2	-	-	-	-	-	3	2	3
CO4	3	2	3	2	1	-	-	-	-	-	-	-	2	-	3
CO5	3	1	2	2	1	-	-	-	-	-	-	-	2	-	3
CO6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

3/10/25, 1:49 PM

-

(SOET)(BTech-MechanicalEngineering)

Title of the Course	Object Oriented Programming Methodology (Python)
Course Code	CSP0401[P]

			Turr										
Year	2nd Semester	Somostor	4th	Credits	L	Т	Ρ	С					
		Gemester		oreans	0	0	2	2					
Course Type	Lab only												
Course Category	Discipline Core												
Pre-Requisite/s		Co-Requisite/s											
Course Outcomes & Bloom's Level	 CO1- To remember the basic programming concept(BL1-Remember) CO2- Understand the basics of Python like python origin downloading and installing and basic concept of python(BL2-Understand) CO3- Apply the various conditional and looping statement and functional programming. (BL3-Apply) CO4- Explain various objects numbers and sequence in python Analyze the concept of regular expression.(BL4-Analyze) CO5- Evaluate the concept of object-oriented programming for better utilization of language.(BL5-Evaluate) 												
Coures Elements	Entreprei Employal	onal Ethics X K Values X	SDG (Goals)	SDG1(No poverty) SDG2(Zero hunger) SDG4(Quality education)									

Modules	Contents	Pedagogy	Hours
Unit 1	Introduction to Python programming Introduction, origin of Python, Downloading, Installing and Running Python, Python Basics: Comment, Identifier, Indentations, Basic data types, conversions, operators, Build in functions. I/O Statements, Condition Statements & Loops: If, else, elif), conditional expressions, while, for, break continue	Lectures with whiteboard/PPT, Recorded video/interactive videos, programming labs	8
Unit 2	Data Structures in Python Lists: Introduction, Accessing list, Operations, Working with lists, Tuple: Introduction, Accessing tuples, Operations, Working with list, Dictionaries: Introduction, Accessing values in dictionaries, Working with dictionaries, Set: Introduction ,Accessing set, Operations, Working with sets	Lectures with whiteboard/PPT, Recorded video/interactive videos, programming labs	8
Unit 3	Functions, Modules, File Handling Functions: Defining a function, Calling a function, Types of functions, Function Arguments, Anonymous function, Global and local variables, Recursion. Modules: Creating modules, Importing module, Packages, File Handling :Opening and closing files, Reading and writing files	Lectures with whiteboard/PPT, Recorded video/interactive videos, programming labs	8
Unit 4	Exceptional Handling, Regular Expressions Exception Handling: Exception, Exception Handling, Try and Except clause, User Defined Exceptions, Exception handling in files). Regular Expressions: Introduction/motivation, special symbols and characters for REs, Match function, Search function., Matching VS Searching., Modifiers, Patterns.	Lectures with whiteboard/PPT, Recorded video/interactive videos, programming labs	9
Unit -5	Object Oriented Programming in Python Introduction, OOPS Basics: Class and object, Constructors, Need of Encapsulations, Attributes, default attributes, static attributes, static methods, initializing objects, Pass by reference, self. Relational- ships: Introduction, Aggregation, Dependency. Inheritance: Need of Inheritance, Overriding, Super, Types of Inheritance. Abstract Class, methods.	Lectures with whiteboard/PPT, Recorded video/interactive videos, programming labs	9

Part C

Modules	Title	Indicative-ABCA/PBL/ Experiments/Field work/ Internships	Bloom's Level	Hours
unit 1-2	Practical Assignment	Experiments	BL2-Understand	7
1-5	Activity Based Learning	Experiments	BL3-Apply	10

Part D(Marks Distribution)

			Theory		
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation
	100	60			
			Practical		
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation
100	40	40	20	60	

Part E

Books	
Articles	
References Books	
MOOC Courses	
Videos	

Course Articulation Matrix

COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	-	-	-	2	2	-	-	-	2	-	-	1	-	1
CO2	1	2	1	2	2	2	-	-	-	2	-	-	1	-	3
CO3	2	2	1	-	1	-	-	-	-	-	-	-	3	2	3
CO4	2	2	-	3	1	-	-	-	-	-	-	-	3	3	3
CO5	2	2	-	2	1	-	-	-	-	-	-	-	2	2	3
CO6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

(SOET)(BTech-MechanicalEngineering)

Title of the Course	Engineering Mathematics-III
Course Code	MAL0408[T]

Year	2nd	Semester	4th	Credits	L	Т	Р	С
Tear	fear 2nd Semester 4th Creu		Credits	2	1	0	3	
Course Type	Theory	only						
Course Category	Basic S	Sciences and Mat	hematics					
Pre-Requisite/s	Basic k	nowledge of equ	ations	Co-Requisite/s	Basic	knowle	edge of	roots
Course Outcomes & Bloom's Level								
Coures Elements	Entrepr Employ Profess Gender Human	evelopment × reneurship × /ability × sional Ethics × r × values × nment ×	SDG (Goals)	SDG4(Quality educati	on)			

Modules	Contents	Pedagogy	Hours
Unit 1	Introduction to numerical computing, Approximation and error in numerical computations, Numerical solution of algebraic and Transcendental equations. Regula-Falsi method, Newton-Raphson method, Graffes-Root squaring method, Iterative method. Solution of simultaneous linear equation, Gauss-Elimination method, Jacobi's method Gauss- Seidel method Iterative method. Numerical differentiation and integration(Trapezoidal rule Simpson's 1/3rd rule, Simpson's 3/8rule)	Lecture with white board and PPT, Audio/Video clips, group discussion, quiz	8
Unit 2	Difference operators, Interpolation: Newton's forward and backward method, Lagrange method, Central difference interpolation, Numerical solution of ordinary differential equations: Picard's method, Euler method, Modified Euler method and Runge- Kutta Method, Numerical solution of partial differential equation: Elliptic (Laplace Equation), Parabolic (Heat conduction equation)	Lecture with white board and PPT, Audio/Video clips, group discussion, quiz	8
Unit 3	Laplace Transform: Laplace Transform of elementary functions, Laplace Transform of derivatives, integrals and multiplication by t^n and division by t, Inverse Laplace Transform., convolution Theorem (application only), application to solution of differential equations.	Lecture with white board and PPT, Audio/Video clips, group discussion, quiz	8
Unit 4	Fourier transform, Fourier complex transform Fourier integral theorem, Fourier sine and cosine transform of simple function of derivatives, Finite Fourier sine & cosine transform, inverse of Fourier transform, Application to differential equation, solution of one dimensional heat and wave equations through Fourier transform.	Lecture with white board and PPT, Audio/Video clips, group discussion, quiz	8
Unit 5	Transform: Definition of Z -transform, Z- transform of simple sequences. Properties of Z -transform. Initial and final value theorem, Inverse Z -transform, partial fraction method, convolution theorem, residue method, Application to finite difference equation.	Lecture with white board and PPT, Audio/Video clips, group discussion, quiz	8

Part D(Marks Distribution)

			Theory			
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation	
100	40	40	12	60		
			Practical			
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation	
	0					

Part E

Books	1. B.V.Ramana, Higher Engineering Mathematics, Tata McGraw Hill 2. B.S.Grewal, Higher Engineering Mathematics ,Khanna Publishers 3. H.K.Das and R. Verma, Higher Engineering Mathematics, S.Chand and Company Pvt.Ltd.
Articles	
References Books	1. E.Kreyszig, Advanced Engineering Mathematics ,John Wiley and Sons, 1999 2. M.K.Jain, S.R.K.Iyengar and R.K.Jain, Numerical Methods for Scientific and Engineering Computation, New Age International Publishers. 3. T. Veerajan and T. Ramachandran, Theory and Problems in Numerical Methods, Tata McGraw Hill
MOOC Courses	https://onlinecourses.nptel.ac.in/noc24_ma36/preview
Videos	https://onlinecourses.nptel.ac.in/noc24_ma36/preview

COs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-	-	-	2	2	-	-	-	2	-	-	1	-	1
CO2	-	-	1	2	2	2	-	-	-	2	-	-	1	-	3
CO3	-	-	1	-	1	-	-	-	-	-	-	-	3	2	3
CO4	-	-	-	2	1	-	-	-	-	-	-	-	2	3	3
CO5	-	-	-	2	1	-	-	-	-	-	-	-	2	2	3
CO6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Course Articulation Matrix

(SOET)(BTech-MechanicalEngineering)

Title of the Course	Fluid mechanics
Course Code	MEL0407[T]

		1						
Year	2nd	Semester	4th	Credits		Т 1	P 1	C 4
Course Type	Embedde	ed theory and lab	1		I	1	1	
Course Category	Discipline	e Core						
Pre-Requisite/s		ctor calculus, ordinary and partial differential uations, some exposure to complex variables.						
Course Outcomes & Bloom's Level	Rememb CO2- To Understa CO3- To (BL3-Ap) CO4- To	eer) describe the applicati and) apply the knowledge oly) analyze the systems	on of engineering n of fluids in laminar a in boundary layer.(I	d engineering mechanic nechanics and physics i and turbulent flow of var BL4-Analyze) onal fluid dynamics. (BL 4	n flui rious	ids. (E syste	ems.	
Coures Elements	Entreprer Employal	nal Ethics X K alues X	SDG (Goals)	SDG11(Sustainable cities and economies)				

Modules	Contents	Pedagogy	Hours
1	Definitions of fluid, Types of fluid, Fluid Properties, velocity of sound ideal fluid viscosity, effect of temperature and pressure on viscosity, surface tension capillarity, vapour pressure and cavitation. Fluid Statics: Pascal's law, hydrostatics manometry, fluid forces on submerged plain and curved surfaces, The international standard atmosphere, metacentric height, stability, submerged bodies, floating bodies.		10
2	Kinematics and conservation of Mass: Flow classifications, fluid velocity and acceleration, streamlines and the stream function. pathlines and streak lines. Deformation of a fluid element, vorticity and circulation. Types of flow, Flownet, Laplace equation, continuity equation. Fluid Momentum: Euler's Momentum theorem, applications of the momentum theorem, Bernoulli's equation. Applications of Bernoulli's Eqn: Pitot tube, Orifice meter, Nozzle, Venturimeter.	Lectures with white Boad, Marker, Assignment , quiz	10
3	Laminar Flow: Hagen Poiseuille flow, Plane Poiseuille flow and couette flow. Flow Through Pipes: Reynold's experiment, Darcy's Weisback equation. Major and Minor losses, Total and Hydraulic gradient lines, Flow through pipe line. Pipes in series, parallel; transmission of power through pipes.	Lectures with White Boad, Marker, Assignment , Quiz, Seminar	8
4	The Boundary Layer: Description of the boundary layer. Boundary Layer thickness, boundary layer separation and control. The Prandtl boundary layer equation. Solution for laminar boundary layer. The momentum equation for the boundary layer. The flat plate in uniform free stream with no pressures gradients. Dimensional Analysis: Buckingham variables, Model Similitude, Force ratio, Dimensionless numbers and their applications. Undistorted model distorted model scale effect.	Lectures with White Boad, Marker, Assignment , Quiz, Seminar, Presentation	8
5	Turbulent Flow: Variation of friction factor with Reynold's number. The Prandtl Mixing length hypothesis applied to pipe flow, velocity distribution in smooth pipes, rough itmuniversity.ac.in/exam/syllabusreportcoursewise/	Lectures with White Boad, Marker, Assignment , Quiz, Seminar, PBL	8

pipes.Simple solution of Navier Stokes
equations (without derivation).

Part C

Modules	Title	Indicative-ABCA/PBL/ Experiments/Field work/ Internships	Bloom's Level	Hours
1	To determine Cv, Cc and Cd for orifice meter	Experiments	BL3-Apply	3
2	To determine Cv, Cc and Cd for venturi meter	Experiments	BL2-Understand	3
3	Find the losses due to friction in pipe	Experiments	BL4-Analyze	3
4	Find the losses due to pipe fitting.	Experiments	BL4-Analyze	3
5	Find the Cd for Nozzle meter.	Experiments	BL5-Evaluate	3
6	Find the meta-centric height.	Experiments	BL2-Understand	3
7	Find the Cd for different type of Notches.	Experiments	BL3-Apply	3
8	To Draw performance curve for forced vortex flow	Experiments		3

Part D(Marks Distribution)

			Theory		
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation
100	40	40	12	60	
			Practical	· · · ·	
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation
100	50	40	20	60	

	Part E
Books	Engineering Fluid Mechanics, K. L. Kumar, Eurasia Publishing House Pvt. Ltd. Fluid Mechanics and Machines, F.M. White, John Wiley & Sons Fluid Mechanics and Machines, A. K. Jain Fluid Mechanics, V. L. Streeter, McGraw Hill Fluid Mechanics and Hydraulic Machines, R. K. Bansal, Laxmi Publication New Delhi Fluid Mechanics with Applications, S. K. Gupta V. Gupta, New Age Publications
Articles	
References Books	Fluid Mechanics for Chemical engineers, Noel de Nevers, Mc Graw HillII Edition 1991 Fluid mechanics for chemical engineers, James O Wikes and Stacy G. Bikes, Prentice Hall.
MOOC Courses	https://www.mooc-list.com/tags/fluid-mechanics
Videos	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	-	-	-	2	2	-	-	3	3	-	-	3	3	2
CO2	3	1	2	2	2	2	2	1	3	3	1	-	3	3	3
CO3	-	1	3	3	1	2	2	2	-	2	-	3	3	3	2
CO4	1	2	3	3	2	-	3	2	-	-	2	1	3	2	2
CO5	-	1	-	-	2	3	-	-	-	-	2	-	3	-	3
CO6	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-

Course Articulation Matrix

(SOET)(BTech-MechanicalEngineering)

Title of the Course	Energy Conversion Systems
Course Code	MEL0411[T]

					L	Т	Р	С
Year	2nd	Semester	4th	Credits		-	-	<u> </u>
					2	1	1	4
Course Type	Embedde	ed theory and lab						
Course Category	Discipline	e Core						
Pre-Requisite/s		udents should have fundamental knowledge thermodynamics, basic mathematics and ysic.						
Course Outcomes & Bloom's Level	CO2- Uno CO3- App CO4- Ana	derstating the concer olying the basic conc alyzing the working o	ot of Energy conver ept of Heat Transfe f boilers, turbines, o	nics(BL1-Remember) sion systems(BL2-Under (BL3-Apply) condensers(BL4-Analyz condensers(BL5-Evalu	ze)	·		
Coures Elements	Entreprer Employat	nal Ethics X K alues X	SDG (Goals)	SDG7(Affordable and clean energy) SDG9(Industry Innovation and Infrastructure)				

Modules	Contents	Pedagogy	Hours
Unit-1	Thermodynamic Relation: Thermodynamic Coordinates, Exact differentials, Mathematical conditions for exact differentials, Maxwell relations, Clausius Clayborn equation, its applications, Joule Thomson coefficient, Inversion curve, coefficient of volume expansion, adiabatic and Isothermal Compressibility	Lectures with white board/PPT, Quiz, Group discussion	8
Unit-2	Boilers: Definition, Classification, working of fire tube and water tube Boilers, Natural and forced Draught, Chimney height calculation, Mountings and accessories Air Preheater, feed water heater, super heater, Boiler efficiency, equivalent evaporation, Boiler trial, heat balance sheet.	Lectures with white board/PPT, Quiz, Group discussion	8
Unit-3	Steam nozzles: Flow through nozzles, variation of velocity, area and specific volume, conditions for maximum discharge, chocked flow, throat area, nozzle efficiency, effect of friction on nozzle, supe saturated flow. Condensers: Classification, Air leakage, performance, comparison, efficiency	Lectures with white board/PPT, Quiz, Group discussion	8
Unit-4	Steam Engines and Turbines: Introduction of steam engines, Classification, working of steam engine, Indicator Diagram, Impulse and reaction turbine, staging, stage and overall efficiencies, reheat factor, Bleeding, velocity diagrams, simple impulse and reaction turbine, Work done, comparison with steam engines, losses in steam turbines, Governing of turbines, Vapour Power Cycles: Comparison of Carnot and Rankine cycles, Effect of pressure and temperature on Rankine cycle, Reheat cycle, Regenerative cycle	Lectures with white board/PPT, Quiz, Group discussion	8
Unit-5	Gas turbines: Gas turbines classification, Brayton cycle, principles of gas turbine, gas turbine cycles with intercooling, reheat, regeneration and their combinations, stage efficiency, polytrophic efficiency, deviation of actual cycles from ideal cycle.	Lectures with white board/PPT, Quiz, Group discussion	8

Modules	Title	Indicative-ABCA/PBL/ Experiments/Field work/ Internships	Bloom's Level	Hours
Experiment -1	Study of Babcock and Wilcox Boiler	Experiments	BL4-Analyze	2
Experiment -2	Study of Fire Tube Boiler	Experiments	BL4-Analyze	2
Experiment -3	Study of Boiler Mountings	Experiments	BL4-Analyze	2
Experiment -4	Study of Accessories of Boiler Economizer	Experiments	BL4-Analyze	2
Experiment -5	Study of Other Mountings of the boiler	Experiments	BL4-Analyze	2
Experiment -6	Study of The Locomotive Boiler	Experiments	BL4-Analyze	2
Experiment -7	Study of The Pelton Wheel Turbine	Experiments	BL4-Analyze	2

Part D(Marks Distribution)

			Theory		
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation
100	40	40	12	60	
			Practical		
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation
100	50	40	20	60	

Part E

Books	D. Text Books P.K. Nag "Basic and Applied Thermodynamics" Tata MC Graw Hill.
Articles	
References Books	D. S. Kumar "Engineering Thermodynamics" First edition (June 2012)
MOOC Courses	https://onlinecourses.nptel.ac.in/noc23_ch76/preview
Videos	<

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	-	-	-	2	2	-	-	3	3	-	-	3	2	2
CO2	3	1	2	2	2	2	2	1	3	3	1	-	3	3	3
CO3	-	1	3	3	1	2	2	2	-	2	-	3	3	3	2
CO4	1	2	3	3	2	I	3	2	I	-	2	1	3	2	2
CO5	-	1	-	-	2	3	-	-	-	-	2	-	3	-	3
CO6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Course Articulation Matrix

(SOET)(BTech-MechanicalEngineering)

Title of the Course	Kinematics of Machines
Course Code	MEL0415[T]

Year	2nd Semester 4th Credits	L	Т	Ρ	С			
Tear		Greatis	2	1	0	3		
Course Type	Theory	only						
Course Category	Disciplir	ne Core						
Pre-Requisite/s	Knowlee accelera	dge of basic veloci ation.	ity and	Co-Requisite/s				
Course Outcomes & Bloom's Level	gears.(E CO2- To (BL2-U) CO3- To mechan CO4- To CO5- To	BL1-Remember) o understand veloc nderstand) o implement veloci iism.(BL3-Apply) o analyze the differ	city and accelera ty and accelerati rent types of med lications of kinen	anism, velocity, accelera tion analysis of different on analysis to cam, gea chanism. (BL4-Analyze) natics of machine in vari	types irs and	of mec	hanisn ent type	۱.
Coures Elements	Skill Development ✓ Entrepreneurship × Employability × Professional Ethics × Gender × Human Values × Environment ×						structu	re)

Part B

·

Modules	Contents	Pedagogy	Hours
Unit-1	Basic Concept of Mechanisms: Introduction to planar, spherical and special mechanisms, Terminology, mechanism and machine, link, kinematic pair, kinematic chain, mobility, classification of mechanisms, kinematic inversions, Grubler's criteria, Grashof's law. Introduction to other mechanisms: Universal joint, Pantograph, Straight line mechanisms, Davis and Ackermann's steering mechanisms.	Lectures with whiteboard/PPT, and animation of different mechanism, Recorded video/interactive videos	8
Unit-2	Velocity Analysis: Velocity definition, rigid body rotation, velocity difference between points of rigid body, velocity polygon for simple mechanisms, vector method applied to complex mechanisms, Instantaneous center of velocity and its location, Aronhold Kennedy theorem of three centers, velocity analysis using instantaneous centers.	Lectures with whiteboard/PPT, and animation of different mechanism, Recorded video/interactive videos	8
Unit-3	Acceleration analysis: Definition, types of acceleration, acceleration difference between points on a rigid body, acceleration polygon, analytical/vector methods, Corriolis acceleration and its examples	Lectures with whiteboard/PPT, and animation of different mechanism, Recorded video/interactive videos	8
Unit-4	Cams: Introduction, classification of cams and followers, types of follower motion and their comparison, displacement diagram, nomenclature and graphical layout of cam profile, undercutting in cam profile, analytical treatment of tangent and circular cams with flat face and roller followers.	Lectures with whiteboard/PPT, and animation of different mechanism, Recorded video/interactive videos	8
Unit-5	Gear and Gear Trains: Terminology and definitions, law of gearing, Involute properties, Gear tooth standards for interchangeable gears, Gear tooth action, path and arc of contact, contact ratio, interference and undercutting, avoiding interference. Gear Trains: Parallel axis gear trains, determination of number of teeth, velocity ratio, Epicyclic gear trains.	Lectures with whiteboard/PPT, and animation of different mechanism, Recorded video/interactive videos	8

Part D(Marks Distribution)

			Theory		
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation
100	40	40	12	60	
			Practical		
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation
	0	0			

Part E

Books	1. Rattan S S Theory of Machines TMH.
Articles	
References Books	1 Ambekar A. G Mechanism and Machine Theory PHI 2 Ghosh A. and Mallick A. Theory of Mechanisms and Machines Affiliated East- KWest Press. 3 Shigley J.E. and Uicker J.J Theory of Machines and Mechanisms McGraw-Hill.
MOOC Courses	https://onlinecourses.nptel.ac.in/noc22_me25/preview
Videos	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	-	-	-	2	2	-	-	3	3	-	-	3	2	2
CO2	3	1	2	2	2	2	2	1	3	3	1	-	3	3	3
CO3	1	2	2	2	1	2	2	2	1	1	-	3	2	3	2
CO4	1	3	2	3	2	1	3	2	-	-	2	2	2	2	2
CO5	-	1	1	2	2	3	3	-	-	-	2	-	1	-	3
CO6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Course Articulation Matrix

(SOET)(BTech-MechanicalEngineering)

Title of the Course	Machining processes
Course Code	MEL0442[T]

Year	2nd	Semester	4th	Credits	L	Т	Р	С
i eai	2110	Gemester		oreans	2	1	1	4
Course Type	Embedd	ed theory and lab						
Course Category	Disciplin	e Core						
Pre-Requisite/s		lge of material scier cturing processes	nce and	Co-Requisite/s				
Course Outcomes & Bloom's Level	CO2- To CO3- To CO4- To	o understand the bas implement the med analyze the differe	sic concept of met chanism of machir nt parameters use	chining operations.(BL1 - tal cutting mechanism.(B ning in different machine ed in machining operatio uring the machining.(BL	3L2-U s.(BL ons.(B	Inders .3-App L4-Ar	stand) oly) ialyze	
Coures Elements	Entrepre Employa Professi Gender	onal Ethics X X Values X	SDG (Goals)	SDG9(Industry Innovation and Infrastructure)				cture)

Modules	Contents	Pedagogy	Hours
Unit 1	Metal Cutting: Economics of machines, introduction to machining processes, classification, mechanics of chip formation process, concept of shear angle, chip contraction and cutting forces in metal cutting, Merchant theory, tool wear, tool life, machinability. Fundamentals of measurement of cutting forces and chip tool interface temperature.	Lectures with whiteboard/PPT, Quiz, Group discussion	11
Unit 2	Cutting Tools: Types, geometry of single point cutting tool, twist drill and milling cutter, tool signature. Cutting Tool Materials: Classification of cutting tool materials and properties, tool insert, Selection of machining parameters. Coolants and lubricants: classification, purpose, function and properties.	Lectures with whiteboard/PPT, Quiz, Group discussion	10
Unit 3	Machine Tools Lathe: Classification, description and operations, kinematic scheme of lathe, and lathe attachments. Speed, feed and machine time calculations. Shaping And Planning Machine: Classification, description and operations. Milling Machine: Classification, description and operations, indexing devices, up milling and down milling.	Lectures with whiteboard/PPT, Quiz, Group discussion	8
Unit 4	Drilling Machine: Classification, description and operations. Speed, feed and machine time calculations. Boring Machine: Classification, description and operations. Broaching Machine: Classification, description and operations.	Lectures with whiteboard/PPT, Quiz, Group discussion	7
Unit 5	Grinding Machines: Classification, description and operations, grinding wheel composition, nomenclature of grinding wheels.	Lectures with whiteboard/PPT, Quiz, Group discussion	6

Modules	Title	Indicative-ABCA/PBL/ Experiments/Field work/ Internships	Bloom's Level	Hours
Experiment 1	Study of different parts of lathe machine	Experiments	BL2- Understand	2
Experiment 2	To perform Facing, Turning and Taper turning operations on the given work piece.	Experiments	BL5-Evaluate	2
Experiment 3	To perform thread cutting and knurling operation on the given work piece.	Experiments	BL5-Evaluate	2
Experiment 4	Study of different parts of Shaper machine	Experiments	BL2- Understand	2
Experiment 5	To perform the operations on Shaper machine.	Experiments	BL5-Evaluate	2
Experiment 6	Study of different parts of Milling machine	Experiments	BL2- Understand	2
Experiment 7	To perform the operations on Milling machine.	Experiments	BL5-Evaluate	2
Experiment 8	To perform the operations on Drilling machine.	Experiments	BL5-Evaluate	2

Part D(Marks Distribution)

	Theory											
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation							
100	40	40	12	60								
			Practical									
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation							
100	50	40	20	60								

CO5

CO6

3

-

1

-

2

-

2

-

1

-

-

-

1

-

Part E	
lanufacturing Science East V	V

Books	Ghosh and Mallick Manufacturing Science East West Press, 2010 Dr. P. C. Sharma Manufacturing Technology-II S. Chand & Company Ltd.
Articles	
References Books	P. C. Pandey Production Engineering Science Standard Publishers, 2010 P. N. Rao Manufacturing Technology Vol. II Tata McGraw–Hill, New Delhi, 2009 P M Groover Fundamental of modern manufacturing, Processes And System John Wiley and Sons, 2010
MOOC Courses	https://archive.nptel.ac.in/courses/112/104/112104290/
Videos	

PO3 COs PO1 PO2 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 2 2 2 3 3 3 3 CO1 3 2 1 3 _ _ -2 2 2 3 CO2 3 2 1 3 3 --_ _ -2 3 2 2 2 2 2 CO3 3 1 _ _ -_ _ CO4 3 2 3 2 1 1 _ _ _ 2 _ _ _ _

-

-

-

-

-

-

-

-

-

_

Course Articulation Matrix

PSO3

3

3

3

3

3

-

2

-

-

-

3/10/25, 1:49 PM

-

(SOET)(BTech-MechanicalEngineering)

Title of the Course	Evaluation of Industrial Training-2
Course Code	MED0502[P]

Part A

Year	3rd Semester		5th	Credits	L	Т	Р	С	
icui	ord	Utilitatei	our	0 0 2 Co-Requisite/s ation to their community and develop among thems sibility. (BL2-Understand) ation to the community and involve them in problem n of the community and involve them in problem ng practical solution to individual and community e for group living and sharing of responsibilities of mocratic attitudes. (BL4-Analyze) emergencies and natural disasters and practice national	2				
Course Type	Lab onl	у							
Course Category	Projects	ojects and Internship							
Pre-Requisite/s		ubject knowledge of Mechanical Co-Requisite/s							
Course Outcomes & Bloom's Level	since of CO2- lo solving. CO3- U problem CO4- D acquire CO5- D	f social and civic ar dentify the needs ar (BL2-Understand Itilize their knowled n. (BL3-Apply) Develop the confiden leader ship qualitie	nd responsibility. nd problem of the) ge in finding prace nce require for g es and democrat y to meet emerge	(BL2-Understand) e community and involve ctical solution to individu roup living and sharing ic attitudes. (BL4-Analy encies and natural disas	e them ual and of resp /ze)	i in pro I comm ponsibil	blem nunity lities of		
Coures Elements	Entrepr Employ Profess Gender Human	evelopment ✓ reneurship ✓ rability ✓ sional Ethics × × Values × ment ×	SDG (Goals)	SDG9(Industry Innova	ovation and Infrastructure)			ure)	

Part B

|--|

Modules	Title	Indicative-ABCA/PBL/ Experiments/Field work/ Internships	Bloom's Level	Hours
Module-I	Industrial training has its own importance in a career of a student who is pursuing a professional degree. It is considered as a part of college curriculum. The objective of an industrial training is to provide us an insight regarding internal working of companies. We understand that theoretical knowledge is not enough for a successful professional career. With an aim to go beyond academics, industrial visit provides students a practical perspective of the work place. Industrial trainings provide an opportunity to learn practically through interaction, working methods and employment practices.	Field work	BL4-Analyze	40 hrs
Module-II	It gives students an exposure to current work practices as opposed to possibly theoretical knowledge being taught at college. Industrial visits provide an excellent opportunity to interact with industries and know more about industrial environment. Industrial trainings are arranged by TAP cell with an objective of providing us an opportunity to explore different sectors like IT, Manufacturing services, finance and marketing. Industrial visit helps to combine theoretical knowledge with practical knowledge. Industrial realities are opened to the students through industrial visits/trainings.	Field work	BL5-Evaluate	40 hrs

Part D(Marks Distribution)

	Theory										
Total Marks	Minimum Passing Marks	•		Internal Evaluation	Min. Internal Evaluation						
	50										
			Practical								
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation						
100	50	40	20	60							

Books	
Articles	
References Books	
MOOC Courses	
Videos	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2	-	1	-	-	-	-	-	-	-	2	2	2
CO2	1	-	2	-	2	-	-	-	-	-	-	-	1	2	1
CO3	1	2	-	2	1	-	-	-	-	-	-	-	2	2	1
CO4	1	1	-	2	-	-	-	-	1	-	-	-	2	2	1
CO5	-	-	-	-	1	-	-	-	-	1	-	-	2	1	1
CO6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Course Articulation Matrix

(SOET)(BTech-MechanicalEngineering)

Title of the Course	Machine Design-I
Course Code	MEL0515[T]

Year	3rd	Semester	5th	Credits	L	Т	P	С				
, i cui	010	Comotor	our -	erouno	2	1	1	4				
Course Type	Embedde	nbedded theory and lab scipline Core										
Course Category	Discipline	e Core										
Pre-Requisite/s	include a engineeri materials mathema mechanic	sites for the course "Ma strong foundation in ma ng fundamentals, unde science, proficiency in tics, engineering mecha cs, and familiarity with r s and mechanical syste	echanical rstanding of engineering anics and solid nanufacturing	Co-Requisite/s								
Course Outcomes & Bloom's Level	Mechanic CO2- To compone CO3- To compone CO4- To Coupling CO5- To	cs, and stress- strain etc understand the concept nts and suitable materia apply the concept of de nts(BL3-Apply) analyze the safe dimen , Spring and Screw Jac	c.(BL1-Remember) of design against s al for machine comp sign against static lo sions of Welded Join of under the static an	anics, Machine drawing tatic loading for mechan onents. (BL2-Understa n oading for mechanical nts, Riveted Joints, Sha nd dynamic load. (BL4-A n in various fields such a	nical n d) t, Ke naly	ey, vze	÷)					
Coures Elements	Entreprer Employal	nal Ethics × < alues ×	SDG (Goals)	SDG8(Decent work and economi growth) SDG9(Industry Innovation and Infrastructure) SDG12(Responsible consuption production)								

·

Modules	Contents	Pedagogy		
Unit -1	Design process, Requirement for mechanical and other properties, Design procedure, and use of standards in design, preferred sizes, ergonomic and aesthetic considerations, Selection of materials, mechanical properties, designation for plain carbon steels, alloy steels, cast iron and their engineering usage. Design against static loads, modes of failure	Lecture with PPT, Audio/Video clips, group discussion, Physical model of gear, quiz	10	
Unit -2	Stress concentration and its effect on ductile and brittle materials, stress concentration factor for various geometries, cyclic stresses, notch sensitivity, design for finite and infinite life, Soderberg, Goodman & Gerber criteria	Lecture with PPT, Audio/Video clips, group discussion, lecture with PPT, Review Analysis	6	
Unit -3	Riveting methods, comparison of riveted joints with other joining methods, rivet materials, types of rivet heads, types of riveted joints, caulking and fullering, failure of riveted joints, efficiency of riveted joints, design of boiler joints, eccentric loaded riveted joint. Welded joints: Design of welded joints, butt welds, fillet welds- transverse and parallel fillet, eccentric load, fluctuating load on welded joints	Lecture with PPT, Audio/Video clips, group discussion, lecture with PPT, classroom presentations	8	
Unit -4	Shafts: Cause of failure in shaft, materials for shaft, stress in shaft, and design of shafts subjected to twisting moment, bending moment and combined twisting and bending moments, shaft subjected to fatigue loads, design for rigidity. Keys: Types and selection, design of square and flat keys, splines. Couplings: Selection of couplings, design of rigid and flexible couplings.	Lecture with PPT, Audio/Video clips, group discussion, lecture with PPT, quiz	8	
Unit -5	Mechanical Spring: Types, nomenclature of helical and leaf springs, spring materials, types of ends, design of helical springs subjected to static and fatigue loading, design of leaf springs. Power Screws: Forms of threads, multiple threads, efficiency of square threads, trapezoidal threads, stresses in screws, design of simple screw jack	Lecture with PPT, Audio/Video clips, group discussion, lecture with PPT, quiz	8	

Modules	Title	Indicative-ABCA/PBL/ Experiments/Field work/ Internships	Bloom's Level	Hours
Experiment -1	Material selectionand relevant BIS nomenclature	Experiments	BL2- Understand	2
Experiment -2	development of series for new product	Experiments	BL2- Understand	2
Experiment -3	Examples of Production considerations	Experiments	BL2- Understand	2
Experiment -4	design of Knuckle & Cotter joints	Experiments	BL3-Apply	2
Experiment -5	Design of machine Componets subjected to nFatigue Load	Experiments	BL3-Apply	2
Experiment -6	Design of Riveted joints	PBL	BL4-Analyze	2
Experiment -7	Design of welded joint	PBL	BL3-Apply	2
Experiment -8	Design of Keyed joints and shaft couplings	PBL	BL3-Apply	2

Part D(Marks Distribution)

Theory										
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation					
100	40 40		12	60						
			Practical							
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation					
100	50	40	12	60						

	Part E
Books	Bhandari, V. B. (2016). Design of Machine Elements. Tata McGraw-Hill Education. Shigley, J. E., Mischke, C. R., & Budynas, R. G. (2010). Mechanical Engineering Design (9th ed.). McGraw-Hill Education.
Articles	
References Books	Spotts, M. F., Shoup, T. E., & Hornberger, E. T. (2010). Design of Machine Elements (8th ed.). Pearson. Juvinall, R. C., & Marshek, K. M. (2011). Fundamentals of Machine Component Design (5th ed.). John Wiley & Sons. Norton, R. L. (2009). Design of Machinery (4th ed.). McGraw-Hill Education.
MOOC Courses	https://archive.nptel.ac.in/courses/112/105/112105124/
Videos	

P01 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 COs CO1 3 _ _ 2 2 3 3 -3 2 2 -_ _ _ 2 CO2 3 2 2 2 2 3 3 3 3 3 1 1 1 _ 3 1 2 2 2 2 2 2 1 3 3 2 CO3 1 _ 3 CO4 1 3 3 3 2 -3 2 --2 2 3 2 2 2 2 2 3 2 2 CO5 3 ----3 -3 -CO6 -_ -------------

Course Articulation Matrix

(SOET)(BTech-MechanicalEngineering)

Title of the Course	IC Engines
Course Code	MEL0516[T]

Year	3rd Semester		5th	Credits	L	Т	Р	С		
i eai	510	Demester	501	orealta	2	1	1	4		
Course Type	Embed	Embedded theory and lab								
Course Category	Discipli	ne Core								
Pre-Requisite/s	Knowle	edge of basic thern	nal science.	Co-Requisite/s						
Course Outcomes & Bloom's Level	CO2- T cycles. CO3- T parame CO4- T system CO5- T	 CO1- To remember basic principles of thermal sciences. (BL1-Remember) CO2- To understand the basic concept of thermodynamics, heat engines and air standard cycles.(BL2-Understand) CO3- To implement the knowledge of thermodynamics in determining the engine parameters.(BL3-Apply) CO4- To analyze the thermal efficiency of various cycles and cooling and lubrication systems.(BL4-Analyze) CO5- To evaluate the findings of analysis of supercharging, cooling and lubrication systems within permissible limits of pollutants.(BL5-Evaluate) 								
Coures Elements	Entrepr Employ Profess Gender Human	evelopment ✓ reneurship × vability ✓ sional Ethics × r × values × nment √	SDG (Goals)	SDG7(Affordable and SDG9(Industry Innova				e)		

Part B

•

Modules	Contents	Pedagogy	Hours
Unit-I	Introduction to IC Engines: Definition of engine; classification, Application of IC Engines, Air Standard Cycle and deviation from air standard cycle actual cycle, indicator diagram, MEP, Shaft Power, Indicated Power.	Lectures with whiteboard/PPT, Recorded video/interactive videos	8
Unit-II	Actual working of IC engine: Introduction to fuel air cycles and their significance, composition of cylinder gases, variable specific heats, comparison of air standards & fuel air cycles, effect of operating variable like compression ratio, fuel air ratio, actual cycles and their analysis; difference between actual and fuel-air cycle; actual and fuel-air cycles for S.I. and C.I. engines. Working of 4 stroke petrol & diesel engines and their valve timing diagram, working of 2- stroke petrol & diesel engines & their valve timing diagrams, comparison of two stroke & four stroke engines, actual working of 2 & 4 stroke gas engines and their valve diagram	Lectures with whiteboard/PPT, Recorded video/interactive videos	8
Unit-III	Fuel and Combustion: Fuels for SI and CI engine, Important qualities of SI and CI engines fuels, rating of SI engines, and CI engines fuels, Dopes, Combustion in CI engines, ignition delay, knock and its control, combustion chamber design for CI engines. Combustion in SI engine, detonation, additives, Gaseous fuels, LPG, CNG, Biogas, producer gas, alternatives fuels for IC engines.	Lectures with whiteboard/PPT, Recorded video/interactive videos	8
Unit-IV	Fuel Supply System: Fuel supply system and fuel pumps, properties of air fuel mixture, a sample carburetor an its working, actual air fuel ratio of single jet carburetor, supercharger, introduction to petrol injection, fuel injection systems for C.I., cooling and lubricants of IC engines. Classification of injection systems, injection pump, fuel injection systems, Fuel Injector, Nozzle, Injection of S.I. Engines, Fuel Filters.	Lectures with whiteboard/PPT, Recorded video/interactive videos	8
Unit-V	Measurement and Testing: Measurement of shaft power, indicated power, measurement of speed, air consumption, fuel consumption, heat carried by cooling water, heat carried by the exhaust gases, Morse	Lectures with whiteboard/PPT, Recorded video/interactive videos	8

test heat balance sheet, governing of I.C. Engines, performance characteristics of I.C. Engines: Performance parameters, performance of S.I. Engines, performance of C.L. Engine	
C.I. Engine.	

Part C											
Modules	Title	Indicative-ABCA/PBL/ Experiments/Field work/ Internships	Bloom's Level	Hours							
1	Study of working of Two stroke Petrol engine	Experiments	BL2-Understand	2							
2	Study of working of Two stroke Diesel engine	Experiments	BL2-Understand	2							
3	Study of working of four- stroke Diesel engine	Experiments	BL2-Understand	2							
4	Study of working of four- stroke Petrol engine	Experiments	BL2-Understand	2							
5	To determine the efficiency and heat balance of petrol engine	Experiments	BL3-Apply	2							
6	To determine the efficiency and heat balance of Dieselengine	Experiments	BL3-Apply	2							
7	Study of brake dynamometer	Experiments	BL2-Understand	2							
8	To determine brake power of Petrol engine	Experiments	BL3-Apply	2							

Part D(Marks Distribution)

Theory									
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation				
100	40	40	60						
			Practical						
Total Minimum Passing Marks Marks		External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation				
100	50	40		60					

Part E

Books	1. Sharma and Mathur, Internal Combustion Engines, Dhanpat Rai Publ.
Articles	
References Books	1 Heywood John, Fundamentals of IC Engines, McGraw Hill. 2 Ganeshan V., Internal Combustion Engines Tata McGRaw Hill 3 Domkundwar, Internal Combustion Engines, Dhanpath Rai & Sons
MOOC Courses	https://ocw.mit.edu/courses/2-61-internal-combustion-engines-spring-2017/
Videos	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	1	-	-	3	3	1	-	1	3	3	1	1	1
CO2	3	3	3	1	-	3	3	1	-	1	3	3	1	1	1
CO3	3	3	3	2	2	3	3	1	-	-	3	3	2	2	2
CO4	3	3	2	3	2	3	3	2	2	2	3	3	3	3	3
CO5	3	3	3	3	2	3	3	2	2	2	3	3	3	3	3
CO6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Course Articulation Matrix

(SOET)(BTech-MechanicalEngineering)

Title of the Course	Dynamics of Machines
Course Code	MEL0518[T]

					r						
Year	3rd	Semester	5th	Credits	L	Т	Р	С			
					2	1	1	4			
Course Type	Embedd	Embedded theory and lab									
Course Category	Disciplin	iscipline Core									
Pre-Requisite/s		nowledge of engineering Mechanics, inematics of machines and basic sciences.									
Course Outcomes & Bloom's Level	(BL1-Re CO2- To Underst CO3- To governo CO4- To engines. CO5- To	 CO1- To remember basic principles of engineering mechanics and kinematics of machines. (BL1-Remember) CO2- To understand the basic concept of system of forces and engine operations.(BL2-Understand) CO3- To implement the basics in analyzing the forces on I C engines and steam engines, governors and flywheels.(BL3-Apply) CO4- To analyze the force analysis in balancing of masses in reciprocating and rotary engines.(BL4-Analyze) CO5- To evaluate the findings in implementation of balancing of masses and gyroscopes and vibrations.(BL5-Evaluate) 									
Coures Elements	Entrepre Employa Professi Gender	onal Ethics X X Values X	SDG (Goals)	SDG9(Industry Innova Infrastructure)	ovation and						

Modules	Contents	Pedagogy	Hours
Unit-1	Inertia Forces in Reciprocating Parts D'Alemberts principle, inertia force and inertia torque, equivalent dynamical system, analytical method for velocity and acceleration of the piston, angular velocity and acceleration of the connecting rod, forces on the reciprocating parts of the engine neglecting the weight of the connecting rod: piston effort, force acting along the connecting rod, thrust on the sides of the cylinder walls, crank pin effort and thrust on crank shaft bearing, torque on the crank shaft.	Lectures with whiteboard/PPT, Recorded video/interactive videos	8
Unit-2	Turning Moment Diagrams and Flywheel Turning moment diagram for single cylinder double acting steam engine, fluctuation of energy, maximum fluctuation of energy, coefficient of fluctuation of energy. Flywheel: coefficient of fluctuation of speed, energy stored in a flywheel, dimensions of the flywheel.	Lectures with whiteboard/PPT, Recorded video/interactive videos	8
Unit-3	Governors and gyroscope Introduction, Types of governors, terms used in governors, analysis of watt governor, porter governor, proell governor, sensitiveness of governors, stability of governors, hunting. Gyroscope: Introduction, processional angular motion, gyroscopic couple, effect of gyroscopic couple on an aero plane and naval ship.	Lectures with whiteboard/PPT, Recorded video/interactive videos	8
Unit-4	Balancing Introduction, balancing of rotating masses: balancing of a single rotating mass by a single mass rotating in the same plane, balancing of a single rotating mass by two masses rotating in the different planes, balancing of several masses rotating in the same plane. Balancing of reciprocating masses: primary and secondary unbalanced forces of reciprocating masses, swaying couple and hammer blow.	Lectures with whiteboard/PPT, Recorded video/interactive videos	8
Unit-5	Free vibrations Introduction: Types of free vibrations, natural frequency of free longitudinal ,free transverse vibrations and torsional vibrations , effect of inertia of the constraint in longitudinal , transverse and torsional free vibrations, natural frequency of free transverse vibration due to a point load acting over a simply supported shaft, natural frequency of free transverse vibrations for a shaft subjected to a number of point loads, critical speed of the shaft, free torsional vibration of a single rotor system, torsionally equivalent shaft.	Lectures with whiteboard/PPT, Recorded video/interactive videos	8

Modules	Title	Indicative-ABCA/PBL/ Experiments/Field work/ Internships	Bloom's Level	Hours
Experiment- 1	Experiment on Performance Characteristic Curves of Watt Governor	Experiments	BL2- Understand	4
Experiment- 2	Experiment on Performance Characteristic Curves of Porter Governor	Experiments	BL2- Understand	4
Experiment- 3	Estimation of Gyroscopic Couple & Understanding of Gyroscopic Effects on a rotating disc.	Experiments	BL3-Apply	4
Experiment- 4	Static And Dynamic Balancing of Rotating Masses	Experiments	BL4-Analyze	4
Experiment- 5	Undamped Torsional Vibrations of Single Rotor System	Experiments	BL4-Analyze	4
Experiment- 6	Free and Forced Vibration of Simply Supported Cantilever Beam.	Experiments	BL4-Analyze	4

Part D(Marks Distribution)

Theory											
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation						
100	40	40	12	60							
	Practical										
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation						
100	50	40	20	60							

Part E

Books	1. Rattan S S Theory of Machines TMH.				
Articles					
References Books1. Ambekar A. G Mechanism and Machine Theory PHI 2. Ghosh A. and Mallick A. Th Mechanisms and Machines Affiliated East- KWest Press. 3. Shigley J.E. and Uicker J Theory of Machines and Mechanisms McGraw-Hill					
MOOC Courses	https://archive.nptel.ac.in/courses/112/104/112104114/				
Videos					

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	-	-	-	2	2	-	-	3	3	-	-	3	2	2
CO2	3	1	2	2	2	2	2	1	3	3	1	-	3	3	3
CO3	1	2	3	2	1	2	2	2	2	1	-	3	3	3	2
CO4	1	3	3	3	2	-	3	2	-	-	2	2	3	2	2
CO5	-	2	2	2	2	3	3	-	-	-	2	-	3	-	3
CO6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Course Articulation Matrix

(SOET)(BTech-MechanicalEngineering)

Title of the Course	Fluid Machinery
Course Code	MEL0521[T]

Year	3rd	Semester	5th	Credits		Т 1	P 1	C 4			
Course Type	Embedde	mbedded theory and lab									
Course Category	Discipline	Core									
Pre-Requisite/s	courses a	egral calculus and differential equations, so these urses are prerequisites. It also helps to have taken sysics and thermodynamics prior to this course									
Course Outcomes & Bloom's Level	CO2- To I Understa CO3- To a output(BL CO4- To a Analyze) CO5- To a	 C01- To recall concept of basic sciences and fluid mechanics(BL1-Remember) C02- To Understand Components and operation; velocity triangles, work output(BL2-Inderstand) C03- To apply fluid mechanics in Components and operation, velocity triangles and work utput(BL3-Apply) C04- To analyze Main elements and their functions; Various types and classification(BL4-Inalyze) C05- To evaluate new Components, working principle; pressure variations due to piston cceleration(BL5-Evaluate) 									
Coures Elements	Entreprer Employat	nal Ethics X alues X	SDG (Goals)								

·

Modules	Contents	Pedagogy	Hours
1	Euler's turbomachinery equation, Specific speed, impulse and reaction principle, impulseMomentum principle, jet impingementon stationary and moving flat plates and vanes, calculation for force exerted, work done and efficiency of jet, basic components of turbo machinery and its classification.	Lectures with white board and PPT, Assignment	10
2	Components and operations, velocity triangles, work output, effective head, available power and efficiency, design aspects such as mean diameter of a wheel, Jet ratio, number of jets, number of buckets with working proportion	Lectures with white board and PPT,Quiz, Seminar	10
3	Component and operations, velocity triangle and work output, working proportions and design parameters for Runner, degree of reaction, draft tubes, its function and types, function and brief description of commonly used surge tanks.	Lectures with white board and PPT,Assignment, Poster presentation	8
4	Main elements and their function, periods types and classification, pressure change in a pump, suction, delivery and manometric head, vane shape and its effect on head capacity relationships, Departure from Euler's theory and losses, pump output and efficiency, minimum starting speed and impeller diameters at the inner and Outer periphery	Lectures with white board and PPT,Assignment, quiz	8
5	Components, working principles, pressure variation due to piston acceleration, acceleration effect in suction and delivery pipe, work done against friction, maximum permissible vacuum during suction stroke, Air vessel.	Lectures with white board and PPT,Quiz, seminar, Assignment	6

Modules	Title	Indicative-ABCA/PBL/ Experiments/Field work/ Internships	Bloom's Level	Hours
1	To verify momentum equation by impact of jet apparatus	Experiments	BL3-Apply	04
2	Study of Pelton turbine and perform experiment on Pelton turbine test rig	Experiments	BL4-Analyze	04
3	Study of Francis turbine	Experiments		04
4	Study of Kaplan turbine and perform experiment on Kaplan turbine test rig	PBL	BL6-Create	04
5	Study of centrifugal pump and perform the experiment on centrifugal pump test rig	Experiments	BL2-Understand	04
6	Study of Reciprocating pump and perform the experiment on reciprocation pump test rig	Experiments	BL5-Evaluate	04

			Theory		
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation
100	40	40	12	60	
			Practical		
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation
100	50	40	20	60	

Part E

BooksHydraulic Turbines, Daughaty R L, McGraw Hill Book Co A Text book of Fluid Mecha and Hydraulic Machines, Rajput, R.K., S. Chand and Co., New Delhi						
Articles						
References Books	Fluid Mechanics and Fluid Power Engineering by Kumar D S, S K Kataria and Sons, Delhi Hydraulic Machines by Jagdish Lal, Metropolitan Book Co Pvt. Ltd Fluid Mechanics and Hydraulic Machines, Bansal, R.K., Laxmi Publications, New Delhi					
MOOC Courses	https://archive.nptel.ac.in/courses/112/105/112105206/					
Videos						

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	-	-	-	2	2	-	-	3	3	-	-	3	2	2
CO2	3	1	2	2	2	2	2	1	3	3	1	-	3	3	3
CO3	-	1	3	2	1	2	2	2	-	2	-	3	3	3	2
CO4	1	2	3	3	2	I	3	2	I	-	2	1	3	2	2
CO5	-	2	2	2	2	3	3	-	-	-	2	-	3	-	3
CO6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Course Articulation Matrix

.

(SOET)(BTech-MechanicalEngineering)

Title of the Course	Advanced Manufacturing
Course Code	MEL0522[T]

Year	3rd	Semester	5th	Credits	L	Т	Р	С			
i cai	real Sid Semester Sin Credits		Credita	2	1	0	3				
Course Type	Theory	only									
Course Category	Discipli	ne Core									
Pre-Requisite/s	Informa process	tion about basic mass.	anufacturing	Co-Requisite/s							
Course Outcomes & Bloom's Level	Mechar CO2- To AWJM, CO3- To Apply) CO4- To (BL4-A	 CO1- To recall the concepts of manufacturing, material science, Production, Engineering Mechanics. (BL1-Remember) CO2- To understating the concept of advanced machining process i.e. USM, AJM, WJM, AWJM, ECM, EDM, EBM, and LBM. (BL2-Understand) CO3- To apply the concept of Advanced casting process i.e. Metal mould casting. (BL3-Apply) CO4- To analysis of Advanced welding process i.e. EBW, LBM, USW, Plasma arc welding. (BL4-Analyze) CO5- To evaluation of Advanced Metal Forming & Finishing Processes. (BL5-Evaluate) 									
Coures Elements	Skill Development ✓ Entrepreneurship ✓ Employability × SDG (Goals) SDG9(Industry Innovation and In Gender × Human Values × Environment ✓				nd Infra	astructi	ure)				

Modules	Contents	Pedagogy	Hours
Unit-1	Advanced Machining Processes Limitations of conventional manufacturing processes, Need and classification of unconventional or advanced manufacturing processes, Process Principle, Parametric analysis and applications of processes such as ultrasonic machining (USM), Abrasive jet matching (AJM), Water jet machining(WJM), Abrasive water jet machining (AWJM), Electrochemical machining (ECM), Electro discharge machining (EDM), Electron beam machining (EBM), Laser beam machining (LBM) Processes.	Lectures with whiteboard/PPT, Quiz, Group discussion	8
Unit-2	Advanced Casting Processes Metal mould casting, Continuous Casting, Squeeze casting, Vacuum mould casting, Evaporative pattern casting, Ceramic shell casting, High pressure die casting process and study of injection chamber (HPDC).	Lectures with whiteboard/PPT, Quiz, Group discussion	8
Unit-3	Advanced Welding Processes Details of electron beam welding (EBW), laser beam welding (LBW), ultrasonic welding (USW), Plasma Arc Welding.	Lectures with whiteboard/PPT, Quiz, Group discussion	8
Unit-4	Advanced Metal Forming Processes Details of high energy rate forming (HERF) process, electro- magnetic forming, explosive forming, Electro-hydraulic forming, Stretch forming, Contour roll forming,	Lectures with whiteboard/PPT, Quiz, Group discussion	8
Unit-5	Advanced Finishing Processes Need, classification, process principle and applications of Abrasive Flow Finishing, Magnetic Abrasive Flow Finishing (MAFF), Magnetic Abrasive Finishing (MAF).	Lectures with whiteboard/PPT, Quiz, Group discussion	8

Part D(Marks Distribution)

			Theory		
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation
100	0	40	12	60	0
			Practical		·
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation
			0		0

Part E

Books	Benedict G.F. Non-Traditional Manufacturing Processes Marcel Dekker
Articles	
References Books	Jain V. K. Advance Machining Processes, Allied Publisher.
MOOC Courses	https://archive.nptel.ac.in/courses/112/107/112107078/
Videos	

Course Articulation Matrix

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	-	-	1	-	-	-	-	-	-	-	-	2	-	3
CO2	3	3	-	3	-	-	-	-	-	3	2	-	3	3	3
CO3	2	2	-	3	-	-	-	-	-	3	2	-	3	3	3
CO4	3	3	-	3	-	-	-	-	-	3	2	-	3	3	3
CO5	3	3	-	3	-	-	-	-	-	3	3	-	3	3	3
CO6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

(SOET)(BTech-MechanicalEngineering)

Title of the Course	Industrial Automation and Control
Course Code	MEL0523[T]

Year	3rd	Semester	5th	Credits	L	Т	Р	С			
Teal	510	Semester	501	Creats	2	1	0	3			
Course Type	Theory of	Theory only									
Course Category	Disciplin	e Core									
Pre-Requisite/s		Student should have knowledge of kinematics of machine and basic mathematics.									
Course Outcomes & Bloom's Level	Remem CO2- Ur CO3- Aρ CO4- De	ber) nderstating the conce oplying the basic deg etermine the options	ept of joints and link ree of freedom con of fixed or flexible a	nines, Dynamics of mac s.(BL2-Understand) cept.(BL3-Apply) automation.(BL4-Analy og human and robots ro	ze)	·		e)			
Coures Elements	Skill Development ✓ Entrepreneurship × Employability ✓ Professional Ethics × Gender × Human Values × Environment ×SDG (Goals)SDG9(Industry Innovation and Infrastructure)										

Modules	Contents	Pedagogy	Hours
Unit-1	Definition of an industrial automation, the advantages & disadvantages, Types of Automation, Automation in production system, Industrial Automation and Robotic Basic Concept Link and Joint Degree of freedom, Orientation Axes, Position Axes, Tool Centre Point (TCP), Work envelope/workspace. Speed, Payload, Repeatability, Accuracy, Settling Lectures with whiteboard/PPT, Quiz, Group discussion Time, Control Resolution, Coordinates, Accuracy and Repeatability, Control resolution, Payload Components, Applications, of Automation system.	Lectures with whiteboard/PPT, Quiz, Group discussion	8
Unit-2	Mechanical System: Components, Dynamics and Modeling Elementary Mechanical Concepts Translation or Linear Motion Rotational Motion- Mechanical Work and power, Motion Conversion Rotary to Rotary Motion Conversion, Rotary to Linear Motion Conversion, Linkages, Couplers, The Concept of Power Transfer, Modelling of Mechanical System-Elements, Rules and Nomenclature, Translational Example, Rotational Example, Electrical Analog	Lectures with whiteboard/PPT, Quiz, Group discussion	8
Unit-3	ActuatorsFlow Control Valves, Electric actuators, Relays, Power relays, - General purpose relay, -Hydraulic Actuators, - Pneumatic Actuators, Pneumatic Valves Stepper Motors-Principles of stepper motor operation, Half Step Mode Operation, Micro- step Mode, Methods of Damping Rotor Oscillations, Permanent Magnet Stepper Motors Stepper motor drives, Linear stepper, motors	Lectures with whiteboard/PPT, Quiz, Group discussion	8
Unit-4	Classification of sensors, Sensor generalities, Sensor characteristics, Angular and Linear Position Sensors, Velocity and Acceleration Sensors Tacho generator, Signac interferometer, micromechanical angular velocity and acceleration sensor, Contact sensor Piezoresistive and capacitive tactile sensors, optical tactile sensors, force measurement by deformation of contact sensors, principle and applications of strain gage sensors, Laser- Range Radar, Laser interferometric distance meter, Laser-Doppler Velocimeter, Pressure, Temperature, Flow measurement	Lectures with whiteboard/PPT, Quiz, Group discussion	8
Unit-5	Automation Design and process specifications, Mechanical Description of the automation, Motion Sequence, Motor and Drive Mechanism Selection, Encoder Selection, Control Structure: Programmable itmuniversity.ac.in/exam/syllabusreportcoursewise/	Lectures with whiteboard/PPT, Quiz, Group discussion	8

Logic Controller used for Industrial
Automation. Lectures with whiteboard/PPT,
Quiz, Group discussion

	Theory											
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation							
100	40	40	12	60								
			Practical									
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation							
0	0	0	0	0	0							

Part E

Books	1. Dr. K. Shivanand and Dr. M. N. Shanmukha Swamy Industrial Automation and Engineering Approach CRC Press
Articles	
References Books	1 Stamatios Manesis George Nikolakopoulos Introduction to Industrial Automation CRC Press Taylor & Francis Group
MOOC Courses	https://onlinecourses.nptel.ac.in/noc20_me39/preview
Videos	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	1	-	-	-	-	-	-	-	-	2	3	2
CO2	3	3	2	1	-	-	-	-	-	-	-	-	2	3	2
CO3	1	3	2	3	-	-	-	-	-	3	-	-	2	3	3
CO4	1	3	2	3	1	-	3	-	-	3	3	-	3	3	3
CO5	-	3	2	3	-	-	-	-	-	3	3	-	3	3	3
CO6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Course Articulation Matrix

3/10/25, 1:49 PM

-

Syllabus-2019-2020

(SOET)(BTech-MechanicalEngineering)

Title of the Course	Minor Project
Course Code	MED0603[P]

Part A

			Fall A						
Year	3rd	Semester	6th	Credits	L	Т	Ρ	С	
i eai	510	Gemester	our	orealta	0	0	2	2	
Course Type	Project								
Course Category	Projects	and Internship							
Pre-Requisite/s		Knowledge of Mechanical engineering and interdisciplinary subjects.							
Course Outcomes & Bloom's Level	CO2- To CO3- To		al ability.(BL3-App to express innova					1	
Coures Elements	Skill Development ✓ Entrepreneurship ✓ Employability ✓ Professional Ethics × Gender × Human Values × Environment ×								

Part B

Modules Contents	Pedagogy	Hours
------------------	----------	-------

Part C

Modules	Title	Indicative-ABCA/PBL/ Experiments/Field work/ Internships	Bloom's Level	Hours
Module-I	Identification of a problem and formulation of a topic of project/thesis	PBL	BL3-Apply	15 hrs
Module-III	Dissertation and Viva-voci	PBL	BL5-Evaluate	20 hrs

	Theory									
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation					
	50									
			Practical							
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation					
100	50	40	20	60						

Part E

Books	
Articles	
References Books	
MOOC Courses	
Videos	

Course Articulation Matrix

COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2	-	1	-	-	-	-	-	-	-	2	2	2
CO2	1	-	2	-	2	-	-	-	-	-	-	-	1	2	1
CO3	1	2	-	2	1	-	-	-	-	-	-	-	2	2	1
CO4	1	1	-	2	-	-	-	-	1	-	-	-	2	2	1
CO5	-	-	-	-	1	-	-	-	-	1	-	-	2	1	1
CO6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

(SOET)(BTech-MechanicalEngineering)

Title of the Course	Machine Design-II
Course Code	MEL0617[T]

					L	Т	Р	С		
Year	3rd	Semester	6th	Credits	2	1	1	4		
Course Type	Embedde	Embedded theory and lab								
Course Category	Discipline	e Core								
Pre-Requisite/s	Prerequisites for the course "Machine Design" include a strong foundation in mechanical engineering fundamentals, understanding of materials science, proficiency in engineering mathematics, knowledge of engineering mechanics, Solid Mechanics, Machine Desig-I and familiarity with manufacturing processes and mechanical systems analysis.									
Course Outcomes & Bloom's Level	Engineeri CO2- To compone CO3- To compone CO4- To under the CO5- To	 CO1- To remember the concepts of Machine Design, Solid mechanics, Machine drawing, Engineering Mechanics etc.(BL1-Remember) CO2- To understand the concept of design against static loading for mechanical components and suitable material for machine components.(BL2-Understand) CO3- To implement the concept of design against static loading for mechanical components(BL3-Apply) CO4- To analyse the safe dimensions of Gear, Clutch, IC Engine, Bearing and Brakes under the static and dynamic load.(BL4-Analyze) CO5- To evaluate the applications of Machine design in various fields such as research and industries.(BL5-Evaluate) 								
Coures Elements	Entreprer Employat	nal Ethics X K alues X	SDG (Goals)	SDG8(Decent work and economi growth) SDG12(Responsible consuption a production)						

Par	t B

•

Modules	Contents	Pedagogy	Hours
Unit -1	Classification of gears, standard gear tooth system, nomenclature for spur, helical and bevel gears, gear standards, force analysis for spur, helical, and bevel gears, gear failure modes, bending and contact stresses in gear tooth, gear material selection, Lewis and Bukingham equations, design of spur, helical and bevel gears, general design procedure for a fixed ratio gearbox	lecture with ppt, Physical model of gear, quiz, Audio/Video clips, group discussion,	10
Unit -2	Sliding Contact Bearing: Types of lubrication-hydro dynamic, hydro static and EHD lubrication, plain journal bearing, Petroff's equation and the bearing characteristic number, boundary and film lubrication, pressure distribution-eccentricity and minimum film thickness, heat generation and thermal equilibrium, design procedure Rolling Contact Bearing: Types of ball and roller bearings, thrust ball bearing, selection of radial ball and roller bearings, bearing life, dynamic equivalent load, reliability of bearing, lubrication and mounting of bearings.	lecture with ppt, Understand the design of Bearing from Physical model bearing, Review Analysis Audio/Video clips, group discussion	6
Unit -3	General design considerations, design of cylinder and cylinder head, piston, connecting rod and crank shaft	lecture with ppt, classroom presentations, Audio/Video clips, group discussion	8
Unit -4	Friction clutches and brakes, uniform pressure and uniform wear assumptions, design of disc and cone types of clutches and brakes, design of external contracting and internal expanding elements, band type clutches and brakes, centrifugal clutches	lecture with ppt, classroom presentations, Audio/Video clips, group discussion	8

Modules	Title	Indicative-ABCA/PBL/ Experiments/Field work/ Internships	Bloom's Level	Hours
Experiment -1	Design of Spur gear	Experiments	BL3-Apply	2
Experiment -2	Design of Helical Gear	Experiments	BL3-Apply	2
Experiment -3	Design of Sliding contact bearing design	Experiments	BL3-Apply	2
Experiment -4	Design of Anti-friction bearing selection	Experiments	BL2- Understand	2
Experiment -5	Design of IC engine Components	Experiments	BL3-Apply	2
Experiment -6	Design of Clutches	Experiments	BL2- Understand	2
Experiment -7	Design of Brakes	Experiments	BL3-Apply	2
Experiment -8	Design of IC engine Components	Experiments	BL4-Analyze	2

Part D(Marks Distribution)

			Theory		
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation
100	40	40	12	60	
			Practical		
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation
100	50	40	20	60	

	Part E							
Books	Bhandari, V. B. (2016). Design of Machine Elements. Tata McGraw-Hill Education. Shigley, J. E., Mischke, C. R., & Budynas, R. G. (2010). Mechanical Engineering Design (9th ed.). McGraw-Hill Education.							
Articles								
References Books	Spotts, M. F., Shoup, T. E., & Hornberger, E. T. (2010). Design of Machine Elements (8th ed.). Pearson. Juvinall, R. C., & Marshek, K. M. (2011). Fundamentals of Machine Component Design (5th ed.). John Wiley & Sons. Norton, R. L. (2009). Design of Machinery (4th ed.). McGraw-Hill Education.							
MOOC Courses	https://archive.nptel.ac.in/courses/112/106/112106137/							
Videos								

P01 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 COs CO1 3 _ _ 2 2 3 3 -3 2 2 -_ _ _ 2 CO2 3 2 2 2 2 3 3 3 3 3 1 1 1 _ 3 1 2 2 2 2 2 2 1 3 3 2 CO3 1 _ 3 CO4 1 3 3 3 2 -3 2 --2 2 3 2 2 2 2 2 3 2 2 CO5 3 ----3 -3 -CO6 -_ -------------

Course Articulation Matrix

(SOET)(BTech-MechanicalEngineering)

Title of the Course	Heat and Mass Transfer				
Course Code	MEL0619[T]				

		1	1			1		T
Year	3rd	Semester	6th	Credits	L	Т	Р	С
					2	1	1	4
Course Type	Embedd	ed theory and lab						
Course Category	Disciplin	e Core						
Pre-Requisite/s	equation	Heat Transfer uses calculus and differential equations, which are prerequisites, and taking a basic fluids course.						
Course Outcomes & Bloom's Level	CO2- To General CO3- To CO4- To Diffusion CO5- To	 CO1- To recall the basic thermal science (BL1-Remember) CO2- To understand Mechanism of Heat Transfer, Conduction, Convection and Radiation, General Differential equation of Heat Conduction(BL2-Understand) CO3- To apply the Laws of Radiation, Stefan Boltzman Law, Kirchoff Law(BL3-Apply) CO4- To Analyse of Diffusion Mass Transfer, Fick's Law of Diffusion, Steady state Molecular Diffusion, Convective Mass Transfer, Momentum(BL4-Analyze) CO5- To evaluate Nusselts theory of condensation, pool boiling, flow boiling, correlations in boiling(BL5-Evaluate) 						
Coures Elements	Entrepre Employa	onal Ethics X X /alues X	SDG (Goals)	SDG9(Industry Innovation and Infrastructure)				

Part B

Modules	Contents	Pedagogy	Hours
1	Conduction: Mechanism of Heat Transfer, Conduction, Convection and Radiation, General Differential equation of Heat Conduction, Fourier Law of Conduction, Cartesian and Cylindrical Coordinates, One Dimensional Steady State Heat Conduction, Conduction through Plane Wall, Cylinders and Spherical systems, Composite Systems, Conduction with Internal Heat Generation, Extended Surfaces Unsteady Heat Conduction, critical thickness of insulation	Lectures with white board and PPT, Assignment	10
2	Convection Convective Heat Transfer Coefficients, Boundary Layer Concept, Types of Convection, Forced Convection, Dimensional Analysis, External Flow, Flow over Plates, Cylinders and Spheres, Internal Flow, Laminar and Turbulent Flow, Combined Laminar and Turbulent, Flow over Bank of tubes, Free Convection, Dimensional Analysis, Flow over Vertical Plate, Horizontal Plate, Inclined Plate, Cylinders and Spheres.	Lectures with white board and PPT, Quiz, Seminar,	10
3	Radiation: Laws of Radiation, Stefan Boltzman Law, Kirchoff Law, Black Body Radiation, Grey body radiation.	Lectures with white board and PPT, Assignment, Poster presentation	8
4	Mass Transfer Diffusion Mass Transfer, Fick's Law of Diffusion, Steady state Molecular Diffusion, Convective Mass Transfer, Momentum, Heat and Mass Transfer Analogy, Convective Mass Transfer Correlations	Lectures with white board and PPT, Assignment, quiz	8
5	Nusselts theory of condensation, pool boiling, flow boiling, correlations in boiling and condensation. Types of Heat Exchangers, LMTD Method of heat Exchanger Analysis, Effectiveness, NTU method of Heat Exchanger Analysis, Overall Heat Transfer Coefficient, Fouling Factors.	Lectures with white board and PPT, Quiz, seminar, Assignment	8

Modules	Title	Indicative-ABCA/PBL/ Experiments/Field work/ Internships	Bloom's Level	Hours
1	Heat transfer through composite wall	Experiments	BL2-Understand	03
2	Thermal conductivity of insulation slab	Experiments	BL3-Apply	03
3	Heat transfer through a pin fin	Experiments	BL4-Analyze	03
4	Heat transfer by natural convection	Experiments	BL4-Analyze	03
5	Heat transfer by forced convection	Experiments	BL5-Evaluate	03
6	To perform experiment on Stefan Boltzman apparatus	Experiments	BL5-Evaluate	03
7	Drop Wise film condensation	Experiments	BL6-Create	03
8	LMTD of heat exchanger	Experiments	BL4-Analyze	03

			Theory				
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Min. Internal Evaluation			
100	40	40		60			
			Practical				
Total Minimum Passing Marks Marks		External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation		
100	50	40		60			

Part E

Books	Sachdeva R. C., "Fundamentals of Engineering Heat and Mass Transfer" New Age International, 1995. D. S. Kumar, Heat and Mass Transfer, SK Kataria & Sons, 2009
Articles	
References Books	Nag P. K, "Heat Transfer", Tata McGraw-Hill, New Delhi, 2002 Holman J. P. "Heat and Mass Transfer" Tata McGraw-Hill, 2000. Kothandaraman C. P. "Fundamentals of Heat and Mass Transfer" New Age International, New Delhi Frank P. Incropera and David P. DeWitt, "Fundamentals of Heat and Mass Transfer", John Wiley Cengel, Yunus A., Heat Transfer- A practical approach, McGraw-Hill Rathore M. M., Comprehensive engineering heat transfer, New Delhi
MOOC Courses	https://www.mooc-list.com/tags/heat-transfer
Videos	

-															
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	-	-	-	2	2	-	-	3	3	-	-	3	2	2
CO2	3	1	2	2	2	2	2	1	3	3	1	-	3	3	3
CO3	1	2	3	2	1	2	2	2	2	1	-	3	3	3	2
CO4	1	3	3	3	2	-	3	2	-	-	2	2	3	2	2
CO5	-	2	2	2	2	3	3	-	-	-	2	-	3	-	3
CO6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Course Articulation Matrix

.

(SOET)(BTech-MechanicalEngineering)

Title of the Course	Power Plant Engineering
Course Code	MEL0620[T]

Year	3rd	Semester	6th	Credits	L	Т	Р	С		
i cai	510	Jennester	our	Greatta	2	1	0	3		
Course Type	Theory	only								
Course Category	Discipli	ne Core								
Pre-Requisite/s	Knowle enginee	dge of basic scienc ering	es and thermal	Co-Requisite/s						
Course Outcomes & Bloom's Level	CO2- To CO3- To CO4- To	 CO1- To recall the concepts of Basic Thermodynamics(BL1-Remember) CO2- To understating the concept of Energy conversion systems(BL2-Understand) CO3- To apply the basic concept of Heat Transfer(BL3-Apply) CO4- To analyze the working of boilers, turbines, condensers(BL4-Analyze) CO5- To evaluate the safe conditions of emission levels(BL5-Evaluate) 								
Coures Elements	Entrepr Employ Profess Gender	Values ×	SDG (Goals)	SDG7(Affordable and SDG9(Industry Innova				ure)		

Modules	Contents	Pedagogy	Hours
Unit-I	Introduction to Power Plants & Boilers Layout of Steam, Hydel, Diesel, MHD, Nuclear and Gas Turbine Power Plants Combined Power Cycles, Comparison and Selection, Load Duration Curves., Steam Boilers and Cycles, High Pressure and Super Critical Boilers, Fluidized Bed Boilers	Lectures with whiteboard/PPT, Quiz, Group discussion	8
Unit-II	Steam Power Plant Fuel and Ash Handling, Combustion Equipment for burning coal, Mechanical Stokers, Pulverize, Electrostatic Precipitator, Draught, different types, Surface Condenser, Types of cooling tower	Lectures with whiteboard/PPT, Quiz, Group discussion	8
Unit-IV	Diesel and Gas Turbine Power Plant, Types of Diesel Plants, Components, Selection of Engine Type, Applications Gas Turbine Power Plant, Fuels, Gas Turbine Material, Open and Closed, Cycles, Reheating, Regeneration and Inter-cooling, Combined Cycle.	Lectures with whiteboard/PPT, Quiz, Group discussion	8
Unit-V	Other Power Plants Geo thermal, Tidel, Pumped storage, Solar thermal central receiver system. Cost of Electric Energy, Fixed and operating Costs, Energy Rates, Types of Tariffs, Economics of load sharing, comparison of economics of various power plants.	Lectures with whiteboard/PPT, Quiz, Group discussion	8

			Theory		
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation
100	40	40	12	60	
			Practical		
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation

	Part E						
Books1. Arora S. C. and Domkundwar S, "A course in Power Plant Engineering", Dhan 2001 2 Nag P. K, "Power Plant Engineering", Tata McGraw-Hill, 1998. 3 R. K. Raj "Power Plant Engineering", Laxmi Publications, 1995.							
Articles							
References Books	1 G. R. Nagpal, "Power Plant Engineering", Khanna Publishers, 1998. 2 K. K. Ramalingam, "Power Plant Engineering", Scitech Publications, 2002. 3 T. Morse Frederick, "Power Plant Engineering", Prentice Hall of India, 1998						
MOOC Courses	https://onlinecourses.nptel.ac.in/noc20_me10/preview						
Videos							

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	3	3	3	2	2	-	1	-	3	-	1	2	1	1
CO2	3	3	3	3	2	2	-	1	-	3	-	1	3	1	1
CO3	3	3	2	2	2	2	-	1	-	3	-	1	3	1	1
CO4	3	2	3	2	2	2	-	1	-	3	-	1	3	2	2
CO5	3	3	3	3	2	2	-	1	-	3	-	1	3	3	3
CO6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Course Articulation Matrix

(SOET)(BTech-MechanicalEngineering)

Title of the Course	Operations Research
Course Code	MEL0626[T]

Year	3rd	Semester	6th	Credits	L	Т	Р	С
Tear	510	Jemester	our	Credits	2	1	0	3
Course Type	Theory of	heory only						
Course Category	Disciplin	scipline Core						
Pre-Requisite/s	Enginee	asic knowledge of linear equation, ingineering mathematics and industrial Co-Requisite/s ngineering.						
Course Outcomes & Bloom's Level	CO2- To CO3- To CO4- To	CO1- To recall the industrial engineering(BL1-Remember) CO2- To understand the Performance of queue, line balancing(BL2-Understand) CO3- To apply the queuing theory and game theory(BL3-Apply) CO4- To measures how effective production system (supply system)(BL4-Analyze) CO5- To evaluate the production system (supply system). (BL5-Evaluate)						
Coures Elements	Entrepre Employa Professi Gender	onal Ethics X X Values X	SDG (Goals)	SDG9(Industry Innovation and Infrastructure) SDG12(Responsible consuption and production)				

•

Modules	Contents	Pedagogy	Hours
Unit-1	Linear Programming Meaning of Linear Programming, General Mathematical Formulation of LPP, Graphical Analysis, Simplex Method, Two-phase Method, Big M- Method; Duality and Post Optimality Analysis Advantage and Limitations of LPP	Lectures with white board and PPT, Report writing	8
Unit-2	Transportation Model Mathematical Formulation, Initial Basic Feasible Solution, Vogel's Approximation Method, Optimization (Minimization and Maximization) Using Modified Distribution Method and Stepping Stone Method Assignment Problem Quiz, Seminar, Assignment Model as a Particular Case of Transportation Model, Formulation of Assignment Problems, Solution of Assignment Problems Using Hungarian Method (Minimization and Maximization) Route Allocation	Lectures with white board and PPT, Quiz, seminar, Poster and PPT	8
Unit-3	Waiting Line Models Introduction, Scope in Management Decisions, Queuing Models M/M/1 (Infinite and Finite Population), Probability Calculations arid Application of M/M/C (Infinite Population) Replacement Models Introduction Scope in Management, Single Equipment Replacement Model and Group Replacement	Lectures with white board and PPT, Quiz, seminar, Poster and PPT	8
Unit-4	Game Theory Introduction to Games, Maximin and Minimax Principles, Pure and Mixed Strategies, Solution of Games Using- Algebraic and Graphical Methods; Linear programming approach for game theory Simulation & Computer Solutions Introduction to simulation, Monte Carlo Technique and Its Applications	Lectures with white board and PPT, Quiz, seminar, Poster and PPT	8
Unit-5	Inventory Models: Economic Order Quantity, Economic Production Order, Models with Price Breaks, Lead Times, Stockouts. Fixed time Period Models with Specified Probability of stock-outs & Service levels. Dynamic Programming Nature of Dynamic Programming Problem, Dynamic Programming Solutions for Knap Sack, Traveling Salesman (Stage Coach), Assignment of Salesmen to Sales Area and Capital Budgeting	Lectures with white board and PPT, Quiz, seminar, Poster and PPT	8

		Theory		
Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation
40	40	12	60	
		Practical		
Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation
-	Marks 40 Minimum Passing	MarksEvaluation4040Minimum PassingExternal	Minimum Passing MarksExternal EvaluationMin. External Evaluation404012PracticalMinimum PassingExternalMin. ExternalMin. External	Minimum Passing MarksExternal EvaluationMin. External EvaluationInternal Evaluation40401260PracticalMinimum PassingExternalMin. ExternalInternal

Part E

	1
Books	1. Gupta & Hira, Operations Research S. Chand & Company
Articles	
References Books	[1] Gupta & Hira, Operations Research, S. Chand & Company [2] Taha Operations Research, Pearson Education [3] Kedar Nath and Ram Nath, Operations Research, Publishers [4] Philips Ravindran, Operations Research, Solberg Wiley India Pvt. Limited.
MOOC Courses	https://onlinecourses.nptel.ac.in/noc22_ma48/preview
Videos	

Course Articulation Matrix

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	-	-	-	2	2	-	-	3	3	-	-	3	2	2
CO2	3	1	2	2	2	-	-	-	3	3	1	-	3	3	3
CO3	1	2	2	2	1	-	-	-	-	1	-	3	2	3	2
CO4	1	3	2	3	2	-	3	2	I	-	2	2	2	2	2
CO5	-	1	1	2	2	-	-	-	-	-	2	-	1	2	3
CO6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

(SOET)(BTech-MechanicalEngineering)

Title of the Course	Additive Manufacturing
Course Code	MEL 0627[T]

					1			1
Year	3rd	Semester	6th	Credits	L	Т	Ρ	С
, iour	ord	Concotor	our	oreans	2	1	1	4
Course Type	Embedd	Embedded theory and lab						
Course Category	Disciplin	e Core						
Pre-Requisite/s	knowled	Understanding of the concept of design knowledge of CAD. Understanding of the concept of material and manufacturingg.						
Course Outcomes & Bloom's Level	CO2- To Underst CO3- To application CO4- To strengths CO5- To	understand the funda and) apply appropriate ma ons.(BL3-Apply) compare and contras s and weaknesses(BL evaluate strategies for	mental principles o terial selection crite t different additive r 4-Analyze) or integrating additiv	tive manufacturing.(BL1 f additive manufacturing eria for different additive manufacturing processe ve manufacturing into ex nd productivity.(BL5-Eva	g. (BL man s bas	. 2- lufact sed o g	uring	
Coures Elements	Entrepre Employa	onal Ethics X X /alues X	SDG (Goals)	SDG9(Industry Innovation and Infrastructure) SDG12(Responsible consuption and production)				

Modules	Contents	Pedagogy	Hours
Unit-1	Introduction and Basic Principles Rapid prototyping and tooling, prototype fundamentals-types of prototypes, History of RP system, development of rapid prototyping, fundamentals of rapid prototyping, Tooling. Three Phases of Development, advantages of rapid prototyping, direct benefits, indirect benefits. Trends in manufacturing, Conventional Machining, Processes- Development of a CAD model, Generation of STL Files, Slicing the STL fileSupport Structures, Manufacturing, Post processing. Fundamentals, need, advantages, disadvantages, benefits, Complexity, Accuracy, Geometry Additive Manufacturing, AM Parts, uses, The Generic AM Process, Layer-Based Manufacturing, 3D Printing, Benefits of AM, Distinction Between AM and CNC Machining, Practical Example AM Parts	Lectures with white board/PPT, Quiz, Group discussion	8
Unit-2	Development of Additive Manufacturing Technology Introduction, Computers, Computer-Aided Design Technology, Other Associated Technologies, The Use of Layers, Classification of AM Processes, Metal Systems, Hybrid Systems, Milestones in AM Development,, AM Around the World, Rapid Prototyping ,Direct Digital Manufacturing	Lectures with white board/PPT, Quiz, Group discussion	8
Unit-3	Liquid-Based Systems 3D Systems Stereolithography Apparatus (SLA), Models and Specifications, Advantages and Disadvantages, Process, Principle, Photopolymers, Photopolymerization, Layering Technology, Solid Ground Curing (SGC), Introduction, Highlights Process Machine Details Applications.	Lectures with white board/PPT, Quiz, Group discussion	8
Unit-4	Solid-Based Rapid Prototyping Systems Fused Deposition Modelling. Modelling System Hardware, Software, Build Materials, The Extrusion Head, Drive Blocks, The Heating Chamber Tips Build Substrate Fused Deposition Modelling Operation Orientation/Positioning Slicing, Build Parameters Uses of Fused Deposition Modelling Parts Advantages and Disadvantages Key Terms Laminated Object Manufacturing, System Hardware, Laminated Object Manufacturing Operation, Software, Part Orientation Crosshatching System Parameters Laminated Object Manufacturing Build Technique, Finishing a Laminated Object Manufacturing Part, Uses of Laminated Object Manufacturing	Lectures with white board/PPT, Quiz, Group discussion	8

3/	0/25, 1:50 PM			
		Advantages and Disadvantages Materials Properties		
	Unit-5	Powder-Based Rapid Prototyping Systems Selective Laser Sintering, Selective Laser Sintering Technology, Purpose, Current State, Advantages, High Throughput Capability, Self- Supporting Build Envelope, Purpose, applications, advantages, Disadvantages, Powder Bed Fusion Processes, Materials Various other Techniques	Lectures with white board/PPT, Quiz, Group discussion	8

гано	Pa	rt (С
------	----	------	---

Modules	Title	Indicative-ABCA/PBL/ Experiments/Field work/ Internships	Bloom's Level	Hours
Experiment -1	Study of Rapid Prototyping and Tooling.	Experiments	BL4-Analyze	2
Experiment -2	Study of Layered Manufacturing (LM).	PBL	BL4-Analyze	2
Experiment -3	Study of Laminated Object Manufacturing (LOM).Laminated Object Manufacturing	Experiments	BL4-Analyze	2
Experiment -4	To study about selective laser sintering	Experiments	BL4-Analyze	2
Experiment -5	Study of Shape Deposition Manufacturing Process Description	Experiments	BL4-Analyze	2
Experiment -6	Study and demonstration of 3D	Experiments	BL4-Analyze	2

Theory									
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation				
100	40	40	12	60					
	Practical								
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation				
100	50	40	20	60					

	Part E
Books	Chua C.K., Leong K.F., and Lim C.S Rapid prototyping: Principles and applications, Third edition, World Scientific Publishers, Gebhardt A Rapid prototyping Hanser Gardener Publications,
Articles	
References Books	Kamrani A.K. and Nasr E. A Rapid Prototyping: Theory and practice Springer Liou L.W. and Liou F.W Rapid Prototyping and Engineering applications: A tool box for prototype development CRC Press
MOOC Courses	https://www.coursera.org/courses?query=additive%20manufacturing
Videos	

Course Articulation Matrix COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3

CO1	1	2	2	-	2	-	-	-	-	-	-	2	3	3	3
CO2	3	3	3	3	3	2	-	-	-	1	3	1	3	3	3
CO3	-	1	-	3	2	2	-	1	-	1	3	3	2	3	3
CO4	3	3	3	3	3	-	-	1	-	2	2	-	3	-	3
CO5	-	3	3	3	3	-	-	-	-	3	3	2	3	3	3
CO6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

3/10/25, 1:50 PM

-

(SOET)(BTech-MechanicalEngineering)

Title of the Course	Training Report
Course Code	MEC0701[P}

Part A

			TaitA		-		1				
Year	4th Semester 7th Credits				L	Т	Р	С			
i cui	-тит	Concord		orealis	0	0	2	2			
Course Type	Lab on	ab only									
Course Category	Project	rojects and Internship									
Pre-Requisite/s		Subject knowledge of Mechanical Co-Requisite/s									
Course Outcomes & Bloom's Level	since o CO2- lo solving CO3- L problem CO4- D acquire CO5- D	 CO1- Understand themselves in relation to their community and develop among themselves since of social and civic and responsibility. (BL2-Understand) CO2- Identify the needs and problem of the community and involve them in problem solving. (BL2-Understand) CO3- Utilize their knowledge in finding practical solution to individual and community problem. (BL3-Apply) CO4- Develop the confidence require for group living and sharing of responsibilities of acquire leader ship qualities and democratic attitudes. (BL4-Analyze) CO5- Develop the capacity to meet emergencies and natural disasters and practice national integration and social harmony(BL5-Evaluate) 									
Coures Elements	Entrepr Employ Profess Gender Human	evelopment ✓ reneurship ✓ vability ✓ sional Ethics × • × Values × ment ×	SDG (Goals)	SDG9(Industry Innova	ation a	nd Infra	astructi	ure)			

Part B

|--|

Modules	Title	Indicative-ABCA/PBL/ Experiments/Field work/ Internships	Bloom's Level	Hours
Module-I	Industrial training has its own importance in a career of a student who is pursuing a professional degree. It is considered as a part of college curriculum. The objective of an industrial training is to provide us an insight regarding internal working of companies. We understand that theoretical knowledge is not enough for a successful professional career. With an aim to go beyond academics, industrial visit provides students a practical perspective of the work place. Industrial trainings provide an opportunity to learn practically through interaction, working methods and employment practices.	Field work	BL4-Analyze	40 hrs
Module-II	It gives students an exposure to current work practices as opposed to possibly theoretical knowledge being taught at college. Industrial visits provide an excellent opportunity to interact with industries and know more about industrial environment. Industrial trainings are arranged by TAP cell with an objective of providing us an opportunity to explore different sectors like IT, Manufacturing services, finance and marketing. Industrial visit helps to combine theoretical knowledge with practical knowledge. Industrial realities are opened to the students through industrial visits/trainings.	Field work	BL5-Evaluate	40 hrs

	Theory											
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation							
	50											
	Practical											
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation							
100	50	40	20	60								

Books	
Articles	
References Books	
MOOC Courses	
Videos	

COs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2	_	1	-	-	-	-	-	-	-	2	2	2
CO2	1	-	2	-	2	-	-	-	-	-	-	-	1	2	1
CO3	1	2	-	2	1	-	-	-	-	-	-	-	2	2	1
CO4	1	1	I	2	-	-	I	-	1-	-	-	-	2	2	1
CO5	-	-	-	-	1	-	-	-	-	1	-	-	2	1	1
CO6	-	I	I	-	-	-	I	-	-	-	-	-	-	-	-

Course Articulation Matrix

(SOET)(BTech-MechanicalEngineering)

Title of the Course	Major Project
Course Code	MED0702[P]

Part A

Vaar	Year 4th Semester 7th Credits						Р	С				
Year	410	Semester	710	Credits	0	0	2	2				
Course Type	Lab only	ab only										
Course Category	Projects	ojects and Internship										
Pre-Requisite/s		Knowledge of Mechanical engineering and nterdisciplinary subjects.										
Course Outcomes & Bloom's Level	CO2- To CO3- To	 CO1- To enhance writing skills and knowledge.(BL2-Understand) CO2- To increase their mental ability.(BL3-Apply) CO3- To inculcate the ability to express innovative opinion and thoughts.(BL4-Analyze) CO4- To have Dissertation works as skills development in students. (BL5-Evaluate) 										
Coures Elements	Entrepro Employa Profess Gender	Values ×	SDG (Goals)	SDG9(Industry Innovation and Infrastructure)								

Part B

Modules	Contents	Pedagogy	Hours
Module-I			

Part C

Modules	Title	Indicative-ABCA/PBL/ Experiments/Field work/ Internships	Bloom's Level	Hours
Module-I	Identification of a problem and formulation of a topic of project/thesis	PBL	BL3-Apply	48 hrs
Module-III	Dissertation and Viva-voci	PBL	BL5-Evaluate	

Part D(Marks Distribution)

		·	Theory		
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation
	50				
			Practical		
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation
100	50	40	20	60	

Part E

Books	
Articles	
References Books	
MOOC Courses	
Videos	

COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2	-	1	-	-	-	-	-	-	-	2	2	2
CO2	1	-	2	-	2	-	-	-	-	-	-	-	1	2	1
CO3	1	2	-	2	1	-	-	-	-	-	-	-	2	2	1
CO4	1	1	-	2	-	-	-	-	1	-	-	-	2	2	1
CO5	-	-	-	-	1	-	-	-	-	1	-	-	2	1	1
CO6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

(SOET)(BTech-MechanicalEngineering)

Title of the Course	Unconventional manufacturing processes
Course Code	MEE0702

Year	4th	Semester	7th	Credits	L	Т	Р	С
i cai	701	Gemester	7.01	oreuns	3	1	0	4
Course Type	Theory	only						
Course Category	Disciplir	ne Electives						
Pre-Requisite/s		dge of materials scie cturing processes	ence and	Co-Requisite/s				
Course Outcomes & Bloom's Level	Mechar CO2- To manufa CO3- To CO4- To tool(BL CO5- E	tics. (BL1-Remember of understand the corr cturing(BL2-Unders of apply the concept of of analyze the uncons 4-Analyze)	er) ncepts of machine tand) of Advanced weldi ventional production	, material science, Prod tools in conventional ar ing and machining proce on process and accordir ional machining process	nd nor essesi ngly di	n-conv (BL3- / esign	entior Apply the	nal)
Coures Elements	Entrepro Employ Profess Gender	Values ×	SDG (Goals)	SDG9(Industry Innova	tion a	nd Infi	rastruo	cture)

Modules	Contents	Pedagogy	Hours
Unit-I	Unconventional machining Processes: Introduction to unconventional machining Processes - classification - Abrasive jet machining, ultra sonic machining process. Plasma Arc Machining - Working principle, Equipment and Characteristics. Water Jet Machining, Abrasive Water Jet Machining	Lectures with whiteboard/PPT, Quiz, Group discussion	8
Unit-II	Electric Discharge Machining, EDM Circuits, Electric discharge wire cutting, Electron Beam Machining. Electrochemical Machining - Process, Principle, Equipment, Mechanism and Applications. Introduction to laser, production of laser and laser Beam Machining.	Lectures with whiteboard and PPT,Quiz, Seminar, Poster	8
Unit-III	Unconventional Welding Processes : Laser Beam Welding, Electron Beam Welding, Ultra-Sonic Welding,Plasma Arc Welding, Explosive Welding, Under Water Welding, Micro Welding Processes.	Lectures with whiteboard/PPT, Quiz, Group discussion	8
Unit-IV	Unconventional Forming Processes : Explosive forming, Electro hydraulic forming, Electro magnetic forming, Laser Bending, Powder rolling, Spray rolling, Hydro forming, Hydrostatic and Powder extrusion, rotary and isothermal forming	Lectures with whiteboard/PPT, Quiz, Group discussion	8
Unit-V	Rapid Prototyping: Definition, types of prototypes, Classification of Rapid Prototyping systems. Stereolithography System, Selective laser sintering, Solid ground curing, Laminated object manufacturing.	Lectures with whiteboard/PPT, Quiz, Group discussion	8

Part D(Marks Distribution)

			Theory		
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation
100	40	40	10	60	
			Practical		
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation

Books	1. Benedict G.F., "Non Traditional Manufacturing Processes", 1st ed., Marcel Dekker Publication, 1987. 2. V.K.Jain, "Advanced Machining Processes", 2nd ed., Allied Publisher Bombay, 2010. 3. Amitabha Ghosh, "Rapid Prototyping; A brief Introduction", 1st ed., East West Publishers, 2006.
Articles	
References Books	1. Hassan, E.LHOFY, "Advanced Machining Process - Nontraditional & Hybrid Machining Process", 1st ed., Tata Mc Graw Hill, 2005. 2. P.C.Pandey, "Modern Machining Processes", 1st ed., Tata Mc Graw Hill, New Delhi, 2009. 3. Ghosh and Malik, "Manufacturing Science", 1st ed., EWP Private Ltd., 2008.
MOOC Courses	https://onlinecourses.nptel.ac.in/noc22_me119/preview
Videos	

Course Articulation Matrix

						000	IISC A	liouiu							
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	I	2	2	1	2	2	3	3	3	-	-	3	3	3
CO2	3	-	2	2	-	2	2	-	1	3	-	-	3	3	3
CO3	3	2	2	1	2	2	-	-	-	-	-	-	3	2	3
CO4	3	2	3	2	1	-	-	-	-	-	-	-	2	-	3
CO5	3	1	2	2	1	-	-	-	-	-	-	-	2	-	3
CO6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

.

(SOET)(BTech-MechanicalEngineering)

Title of the Course	Reliability Engineering
Course Code	MEE0704

Year	4th Semester 7th Credits		L	Т	Р	С		
Tear	701	Gemester	7.01	oreans	3	1	0	4
Course Type	Theory	only						
Course Category	Disciplir	ne Electives						
Pre-Requisite/s		basics of manufactu ustrial engineering	ring operations	Co-Requisite/s				
Course Outcomes & Bloom's Level	 CO1- To recall the production and industrial engineering(BL1-Remember) CO2- To illustrate the basic concepts and techniques of modern reliability engineering too (BL2-Understand) CO3- To apply the principles and techniques of Statistical Quality Control and their practice uses in product and/or process design and monitoring(BL3-Apply) CO4- To analyze the techniques of Statistical Quality Control and their practical uses in product and/or process design(BL4-Analyze) CO5- To evaluate and realize the modern trends in automation linked with reliability and quality control.(BL5-Evaluate) 						ctical ı	
Coures Elements	Entrepre Employa Profess Gender	Values ×	SDG (Goals)	SDG8(Decent work and economic growth SDG9(Industry Innovation and Infrastructure)			wth)	

Part B

Modules	Contents	Pedagogy	Hours
Unit-I	Introduction: Definition of reliability, types of failures, definition and factors influencing system effectiveness, various parameters of system effectiveness.	Lectures with whiteboard/PPT, Quiz, Group discussion	8
Unit-II	Reliability Mathematics: Definition of probability, laws of probability, conditional probability, Bay's theorem; various distributions; data collection, recovery of data, data analysis Procedures, empirical reliability calculations.	Lectures with whiteboard and PPT,Quiz, Seminar, Poster	8
Unit-III	System Reliability: Types of system- series, parallel, series parallel, stand by and complex; development of logic diagram, methods of reliability evaluation; cut set and tieset methods, matrix methods event trees and fault trees methods, reliability evaluation using probability distributions, Markov method, frequency and duration method.	Lectures with whiteboard/PPT, Quiz, Group discussion	8
Unit-IV	Reliability Improvements: Methods of reliability improvement, component redundancy, system redundancy, types of redundancies-series, parallel, series - parallel, stand by and hybrid, effect of maintenance.	Lectures with whiteboard/PPT, Quiz, Group discussion	8
Unit-V	Reliability Testing: Life testing, requirements, methods, test planning, data reporting system, data reduction and analysis, reliability test standards.	Lectures with whiteboard/PPT, Quiz, Group discussion	8

Part D(Marks Distribution)

		Theory		
Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation
40	40	12	60	
		Practical		
Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation
	Marks 40 Minimum Passing	MarksEvaluation4040Minimum PassingExternal	Minimum Passing MarksExternal EvaluationMin. External Evaluation404012PracticalMinimum PassingExternalMin. ExternalMin. External	Minimum Passing MarksExternal EvaluationMin. External EvaluationInternal Evaluation40401260PracticalMinimum PassingExternalMin. ExternalInternal

	Part E
Books	1. R.Billintan & R.N. Allan, "Reliability Evaluat ion of Engineering and Systems", Plenum Press. 2. K.C. Kapoor & L.R. Lamberson, "Reliability in Engineering and Design", John Wiely and Sons. 3. S.K. Sinha & B.K. Kale, "Life Testing a nd Reliability Estimation", Wiely Eastern Ltd.
Articles	
References Books	1. M.L. Shooman, "Probabilistic Reliability, An Engineering Approach", McGraw Hill. 2. G.H.Sandler, "System Reliability Engineering", Prentice Hall.
MOOC Courses	https://www.mooc-list.com/tags/reliability
Videos	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	-	-	-	-	-	1	-	-	1	3	-	1	-	-
CO2	2	-	-	-	2	-	1	-	-	1	3	1	1	1	1
CO3	1	2	2	2	2	-	1	-	1	2	3	2	2	3	3
CO4	1	2	2	2	2	-	1	-	1	2	3	2	3	3	3
CO5	3	3	3	3	2	-	1	-	1	2	3	2	3	3	3
CO6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

(SOET)(BTech-MechanicalEngineering)

Title of the Course	Non-Conventional Energy resources
Course Code	MEE0705

Year	4th	Semester	7th	Credits	L	Т	Р	С
Tear	401	Semester	701	Gredits	2	1	0	3
Course Type	Theory	only						
Course Category	Discipli	ne Electives						
Pre-Requisite/s	Basic k energy.	nowledge of energy	and souses of	Co-Requisite/s				
Course Outcomes & Bloom's Level	CO2- Tr CO3- Tr CO4- Tr fields.(E CO5- Tr	o understanding the o apply the concept o analyze the energ 3L4-Analyze)	e solar thermal pla related to non co y conversion in n ormance and effic	ns.(BL1-Remember) ate.(BL2-Understand) inventional energy.(BL3 on-conventional energy iency of energy aspects	conve	ersion		
Coures Elements	Entrepr Employ Profess Gender Human	evelopment ✓ reneurship ✓ vability × sional Ethics × ✓ Values × ment √	SDG (Goals)	SDG7(Affordable and clean energy) SDG8(Decent work and economic growth)			ר)	

Modules	Contents	Pedagogy	Hours
Unit-1	General Introduction Various non- conventional energy resources–Introduction availability classification relative merits and demerits. Solar Cells Theory of solar cells. Solar cell materials. Solar cell array. Solar cell power plant imitation.	Lectures with white board and PPT, Quiz,Reportwriting,Case Based Assignments	8
Unit-2	Solar Thermal Energy Solar radiation flat plate collectors and their materials, applications and performance, focusing of collectors and their materials, application and performance. Solar thermal power plants. Thermal energy storage for solar heating and cooling limitations	Lectures with white board and PPT, Quiz,Reportwriting,Case Based Assignments	8
Unit-3	Geothermal Energy Resources of geothermal energy thermodynamics of geo- thermal energy conversion- electrical conversion non- electrical conversion environmental Magneto hydrodynamics (MHD) Principle of working of MHD power plant, Performance and limitations. Fuel Cells Principle of working of various types of fuel cells and their working, Performance and limitations.	Lectures with white board and PPT, Quiz,Reportwriting,Case Based Assignments	8
Unit-4	Thermo-electrical and thermionic conversions Principle of working, performance and limitations. Wind Energy; Wind power and its source, site selection, criterion, momentum theory, classification of rotors, concentrations and augments, wind characteristics. Performance and limitations of energy conversion systems.	Lectures with white board and PPT, Quiz,Reportwriting,Case Based Assignments	8
Unit-5	Bio mass Ocean thermal energy conversion (OTEC) Availability, theory and working principle performance and limitations Wave and Tidal wave principle of working, performance and limitations. Water recycling plant.	Lectures with white board and PPT, Quiz,Reportwriting,Case Based Assignments	8

		Theory		
Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation
40	40	12	60	
		Practical		
Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation
	Marks 40 Minimum Passing	MarksEvaluation4040Minimum PassingExternal	Minimum Passing MarksExternal EvaluationMin. External Evaluation404012PracticalMinimum PassingExternalMin. ExternalMin. External	Minimum Passing MarksExternal EvaluationMin. External EvaluationInternal Evaluation40401260PracticalMinimum PassingExternalMin. ExternalInternal

Part D(Marks Distribution)

Part E

Books	1. Raja etal, Introduction Non-Conventional energy resources" SciTech Publications. 2. Johan Twiden and Tony weir "Renewal energy resources "BSP Publications 2006. 3. D.S Chauhan "Non-Conventional energy resources" New Age International. 4. C.S Solanki" Renewal Energy Technology" A Practical Guide for Beginners" PHI.
Articles	
References Books	1. Ghosh and Mallick "Manufacturing Science" East West Press, 2010. 2. Jain R. K. "Production Technology" Khanna Publishers, 2001.
MOOC Courses	https://onlinecourses.nptel.ac.in/noc22_ge14/preview
Videos	

		-		-							-	-			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	1	1	2	2	3	-	3	3	-	1	3	-	3
CO2	3	-	2	2	1	2	2	-	3	3	2	-	3	3	3
CO3	2	-	2	1	3	-	3	1	2	1	-	2	3	3	3
CO4	1	2	2	3	2	2	2	1	-	-	1	2	3	-	3
CO5	1	2	1	3	2	-	2	-	-	-	-	1	3	-	3
CO6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

(SOET)(BTech-MechanicalEngineering)

Title of the Course	Optimization Methods
Course Code	MEE0706

Year	4th	Semester	7th	Credits		Т	Ρ	С
	401	ochiester	7.01	orcans	2	1	0	3
Course Type	Theory or	nly						
Course Category	Discipline	e Electives						
Pre-Requisite/s	strong for numerica modeling knowledg and their program	rerequisite requirements for this course include a rong foundation in calculus, linear algebra, and umerical methods. Proficiency in mathematical odeling and problem-solving is essential. Prior nowledge of optimization concepts, algorithms, nd their applications would be beneficial. Basic rogramming skills may also be advantageous for nplementing numerical methods and algorithms.						
Course Outcomes & Bloom's Level	CO2- Und methods, CO3- App consideri CO4- Eva (BL3-App CO5- Criti problems CO6- Des	call the fundamental cor derstand the principles to Lagrange multipliers, a oly optimization techniquing both unconstrained a aluate the effectiveness oly) tically evaluate the perfort (BL5-Evaluate) sign novel optimization a ion challenges(BL6-Cre	behind optimization t nd Kuhn-Tucker con ues to single-variable and constrained scer of different optimizat ormance of optimizat algorithms or modify	echniques such as dire- ditions.(BL2-Understan e and multi-variable func- narios.(BL3-Apply) tion techniques in variou ion algorithms in solving	ct se nd) ction us so g rea	arch s, cena al-wo	n irios. orld	
Coures Elements	Entreprer Employal	nal Ethics X K alues X	SDG (Goals)	SDG8(Decent work ar growth)	nd ee	conc	omic	

-

Modules	Contents	Pedagogy	Hours
Unit -1	Unconstrained Optimization: Optimizing Single-Variable Functions, conditions for Local Minimum and Maximum, Optimizing Multi-Variable Functions.	Audio/Video clips, group discussion, lecture with PPT, quiz	8
Unit -2	Constrained Optimization: Optimizing Multivariable Functions with Equality Constraint: Direct Search Method, Lagrange Multipliers Method, Constrained Multivariable Optimization with inequality constrained: Kuhn-Tucker Necessary conditions, Kuhn –Tucker Sufficient Conditions.	Audio/Video clips, group discussion, lecture with PPT, Review Analysis	8
Unit -3	Optimization: Quasi-Newton Methods and line search, least squares optimization, Gauss-Newton, Levenberg- Marquartd, Extensions of LP to Mixed Integer Linear Programming (MILP), Non-Liner Programming, The Newton Algorithm, Non- Linear Least Squares, Sequential Quadratics Programming (SQP), Constrained Optimization, SQP Implementation, Multi-Objective Optimization, Branch and Bound Approaches, Genetic Algorithms and Genetic Programming, Singular Based Optimization, On-Line Real-Time Optimization, Optimization in Econometrics Approaches – Blue.	Audio/Video clips, group discussion, lecture with PPT, Review Analysis	8
Unit -4	Optimization and Functions of a Complex Variable and Numerical Analysis: The Finite Difference Method for Poisson's Equation in two Dimensions and for the Transient Heat Equation, Eulers Method, The Modified Euler Method and the Runga-Kutta Method for Ordinary Differential Equations, Gaussian Quardative Tranzoidal Rule and Simpson's 1/3 and 3/8 Rules, the Newton Raphson in one and two Dimensions, Jacobi's Iteration Method.	Audio/Video clips, group discussion, lecture with PPT, quiz	8
Unit -5	Optimization in Operation Research: Dynamic Programming, Transportation – Linear Optimization Simplex and Hitchcock Algorithms, Algorithms, Minimax and Maximum Algorithm, Discrete Simulation, Integer Programming – Cutting Plane Methods, Separable Programming, Stochastic Programming, Goal Programming, Integer Linear Programming, Pure and Mixed Strategy in theory of Games, Transshipment Problems, Heuristic Methods.	Audio/Video clips, group discussion, lecture with PPT, quiz	8

Part D(Marks Distribution)

		Theory		
Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation
40	40	12	60	
		Practical		
Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation
	Marks 40 Minimum Passing	MarksEvaluation4040Minimum PassingExternal	Minimum Passing MarksExternal EvaluationMin. External Evaluation404012PracticalMinimum PassingExternalMin. ExternalMin. External	Minimum Passing MarksExternal EvaluationMin. External EvaluationInternal Evaluation40401260PracticalMinimum PassingExternalMin. ExternalInternal

Part E

Books	Rao, S. S. (2009). Optimization: Theory and applications. John Wiley & Sons. Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge University Press.
Articles	
References Books	 Bazaraa, M. S., Sherali, H. D., & Shetty, C. M. (2006). Nonlinear programming: Theory and algorithms. John Wiley & Sons. Nocedal, J., & Wright, S. J. (2006). Numerical optimization. Springer Science & Business Media. Bertsekas, D. P., & Tsitsiklis, J. N. (1996). Linear and nonlinear programming (2nd ed.). Athena Scientific.
MOOC Courses	https://onlinecourses.nptel.ac.in/noc21_me10/preview
Videos	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	-	-	-	2	2	-	-	3	3	-	-	3	-	2
CO2	3	-	2	1	1	3	-	-	3	3	-	-	2	2	2
CO3	2	-2	2	-	2	2	2	-	2	1	1	2	2	2	1
CO4	2	2	2	2	2	-	-	-	-	1	2	3	-	2	2
CO5	1	2	1	1	1	2	-	-	1	-	2	1	2	-	2
CO6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

(SOET)(BTech-MechanicalEngineering)

Title of the Course	Introduction to Computational Fluid Dynamics
Course Code	MEE0707

Voar	Year 4th Semester 7th		7th	Credits	L	Т	Ρ	С					
Tear			701	Creats	2	1	0	3					
Course Type	Theory o	heory only											
Course Category	Discipline	cipline Electives											
Pre-Requisite/s	solid und equations Additiona computat backgrou in fluid m	erequisite requirements for this course include a id understanding of calculus, differential uations, and basic programming skills. ditionally, familiarity with numerical methods and nputational techniques would be beneficial. A ckground in physics or engineering, particularly luid mechanics and heat transfer, is also ommended.											
Course Outcomes & Bloom's Level	parabolic governing CO2- Und Understa CO3- App elliptic eq CO4- Ana equations CO5- Syr enhancin CO6- Eva	, and hyperbolic equation g fluid motion. (BL1-Ren derstand the difference and) oly solution algorithms I uations. (BL3-Apply) alyze the computational is for incompressible fluin thesize theoretical con g stability and accuracy aluate the practical appling engineering challeng	ons. Memorize the function nember) between initial value ike Jacobi iterative a challenges associa d flow(BL4-Analyze cepts with computat in numerical simula icability and effective	ional methods to devise	n lav roble ods t Stok e stra simi	ws ems. to so ces ateg ulati	(BL2 blve ies fo	or					
Coures Elements	Entreprer Employal	nal Ethics X alues X	SDG1(No poverty) SDG8(Decent work ar growth) SDG9(Industry Innova Infrastructure) SDG12(Responsible of production)	ation	anc	ł							

Modules	Contents	Pedagogy	Hours
Unit -1	Evaluate the practical applicability and effectiveness of computational simulations in addressing engineering challenges related to fluid mechanics and heat transfer accurately.	Audio/Video clips, group discussion, lecture with PPT, quiz	8
Unit -2	Parabolic PDE`s and Stability Analysis Parabolic PDE, Explicit and Implicit Methods, Consistency, Stability Analysis, Error Analysis, Modified Equation, Artificial Viscosity	Audio/Video clips, group discussion, lecture with PPT, Review Analysis	8
Unit -3	Elliptic and Hyperbolic Equation Elliptic Equation, Solution algorithms, Jacobi Iterative, Point Gauss-Seidel and Line Gauss-Seidel Methods, Hyperbolic equations, FTFS, FTCS and BTCS methods	Audio/Video clips, group discussion, lecture with PPT, Review Analysis	8
Unit -4	Numerical Methods for Conduction Heat Transfer Steady and Unsteady Heat Conduction equation, One-dimensional and Two-dimensional Steady State Problems, Three-Dimensional Problem, Transient One- dimensional Problem, False Transient Approach	Audio/Video clips, group discussion, lecture with PPT, quiz	8
Unit -5	Numerical Methods for Incompressible Fluid Flow Governing Equation of Incompressible Fluid Flow, Difficulties in Solving Navier- Stokes equations, Stream-Vorticity Formulation, Primitive Variable Approach, Poisson Equation	Audio/Video clips, group discussion, lecture with PPT, quiz	8

Part D(Marks Distribution)

			Theory				
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation		
100	40 40		12	60			
			Practical				
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation		

Part	E

Books	Smith, J. D., & Johnson, A. B. (2020). Numerical Methods for Partial Differential Equations: Theory and Applications. Publisher Anderson, Jr, J. D. (1995). Computational Fluid Dynamics. McGraw Hill Education. Pletcher, R. H., Tannehill, J. C., & Anderson, D. (2012). Computational Fluid Mechanics and Heat Transfer. CRC Press.
Articles	
References Books	 Ferziger, J. H., & Peric, M. (2002). Computational Methods for Fluid Dynamics. Springer. LeVeque, R. J. (2007). Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems. Society for Industrial and Applied Mathematics. Ferziger, J. H., & Peric, M. (2002). Computational Methods for Fluid Dynamics. Springer.
MOOC Courses	https://onlinecourses.nptel.ac.in/noc21_me126/preview
Videos	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	-	-	-	2	2	-	-	3	3	-	-	3	2	2
CO2	3	1	2	2	2	2	2	1	3	2	2	1	-	2	2
CO3	1	2	2	2	1	2	2	2	1	1	-	2	2	2	2
CO4	1	2	2	2	-	2	2	-	-	2	2	2	2	2	2
CO5	-	1	1	2	2	2	2	-	-	-	-	2	1	-	2
CO6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

(SOET)(BTech-MechanicalEngineering)

Title of the Course	Mechanical System design
Course Code	MEE0708

Year	4th	Semester	7th	Credits	L	Т	Р	С	
Tear	401	Semester	7.01	Credits	3	1	0	4	
Course Type	Theory	only							
Course Category	Disciplir	cipline Electives							
Pre-Requisite/s		dge of mechanical sy s mathematics.	stems and basic	Co-Requisite/s					
Course Outcomes & Bloom's Level	CO2- To methodo CO3- To CO4- To tool/prod	 identify the needs a blogy. (BL2-Underst apply the CAD/CAN analyze the mecha cess(BL4-Analyze) 	and problem of the and) M and simulation s nical systems and	stems(BL1-Remember community and plan the oftware in the problem s their process and accor stems in a specific condi	e prot solving dingly	g. (BL : y desi	3-App gn the	oly)	
Coures Elements	Skill Development ✓ Entrepreneurship × Employability × Professional Ethics × Gender × Human Values × Environment × SDG (Goals) SDG9(Industry Innovati Infrastructure)			tion a	Ind				

Modules	Contents	Pedagogy	Hours
Unit-I	Engineering process and System Approach Basic concepts of systems, Attributes characterizing a system, system types, Application of system concepts in Engineering, Advantages of system approach, Problems concerning systems, Concurrent engineering, A case study- Viscous lubrication system in wire drawing Problem Formulation Nature of engineering problems, Need statement, hierarchical nature of systems, hierarchical nature of problem environment, problem scope and constraint, A case study: heating duct insulation system, high speed belt drive system	Lectures with whiteboard/PPT, Quiz, Group discussion	8
Unit-II	System Theories System Analysis, Black box approach, state theory approach, component integration approach, Decision process approach, A case study- automobile instrumentation panel system. System modeling Need of modeling, Model types and purpose, linear systems, mathematical modeling, concepts, A case study compound bar system	Lectures with white board and PPT, Quiz, seminar, Poster and PPT	8
Unit-III	Graph Modeling and Analysis Graph Modeling and analysis process, path problem, Network flow problem, A case study: Material handling system Optimization Concepts Optimization processes, Selection of goals and objectives-criteria, methods of optimization, analytical, combinational, subjective. A case study: aluminium extrusion system.	Lectures with whiteboard/PPT, Quiz, Group discussion	8
Unit-IV	System Evaluation Feasibility assessment, planning horizon, time value of money, Financial analysis, Acase study: Manufacture of maize starch system Calculus Method for Optimization Model with one decision variable, model with two decision variables, model with equality constraints, model with inequality constraints, A case study: Optimization of an insulation system.	Lectures with white board and PPT, Quiz, seminar, Poster and PPT	8
Unit-V	Decision Analysis Elements of a decision problem, decision making, under certainty, uncertainty risk and conflict probability, density function, Expected monetary value, Utility value, Baye'stheorem, A case study: Installation of machinery System Simulation Simulation concepts, simulation models, computer application in simulation, spread sheet simulation, Simulation process, problem definition, input model construction and solution, limitation of simulation	Lecture with white board and PPT, Audio/Video clips, group discussion, quiz	8

Part D(Marks Distribution)

			Theory			
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation	
100	40	40	10	60		
			Practical			
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation	

Part E

Books	1. Design and Planning of Engineering systems-DD Reredith, KV Wong, RW Woodheap, and RR Worth man, Prentice Hall Inc., Eaglewood Cliffs, New Jerse 2. Design Engineering- JR Dixon, TMH, New Delhi 3. An Introduction to Engineering Design Method-V Gupta /PN Murthy, TMH, New Delhi
Articles	
References Books	1. Engineering Design-Robert Matousck, Blackie and son Itd. Glasgow 2. Optimization Techniques-SS Rao 6. System Analysis and Project Management-Devid I Cleland, William R King, McGraw Hill.
MOOC Courses	https://www.coursera.org/courses?query=machine%20design
Videos	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	2	3	2	1	1	1	-	-	-	1	1	1	2	2
CO2	2	2	3	3	2	2	2	-	-	-	2	1	3	3	3
CO3	2	2	3	3	3	2	3	-	1	1	3	3	3	3	3
CO4	3	3	3	3	3	3	3	-	2	2	3	3	3	3	3
CO5	3	3	3	3	3	3	3	-	2	2	3	3	3	3	3
CO6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

(SOET)(BTech-MechanicalEngineering)

Title of the Course	Computer Aided Design
Course Code	MEL0722[T]

Year	4th	Semester	7th	Credits	L	Т	Ρ	С		
Tear	4th Semester 7th		7 01	Credits	2	1	1	4		
Course Type	Embedde	ed theory and lab								
Course Category	Discipline	e Core								
Pre-Requisite/s	Design" t of compu programr ,familiarit basic unc	rerequisites for the course "Computer Aided esign" typically include a foundational knowledge computer science concepts, proficiency in rogramming languages such as C++ or Python, amiliarity with algorithms and data structures, and asic understanding of graphical user interfaces and design principles.								
Course Outcomes & Bloom's Level	Method, a CO2- To CO3- To CO4- To Analyze) CO5- To	and computer graphics. Understating the conce implement the efficient analyse the different typ	(BL1-Remember) pt of computer grapl way to drawing geor bes of method to dra	Machine drawing and N nics (BL2-Understand) metry in graphics softwa w the 2D and 3D geome nics in various fields suc	ıre. (I etry (3L3 BL4	8-App 4-	•		
Coures Elements	Skill Deve Entreprer Employal Professic Gender > Human V Environm	SDG (Goals)	SDG8(Decent work ar growth) SDG12(Responsible c production)				nd			

Modules	Contents	Pedagogy	Hours
Unit -1	Introduction and elements of CAD, Essential requirements of CAD, Concepts and importance of integrated CAD/CAM, Engineering Applications, CAD/CAM systems, Graphics Input devices-cursor control Devices, Digitizers, Keyboard terminals, Image scanner, Speech control devices and Touch, panels, Graphics display devices-Cathode Ray Tube, Random and Raster scan display, Colour CRT monitors, Direct View Storage Tubes, Flat Panel display, Hard copy printers and plotters	lecture with PPT, quiz, Audio/Video clips, group discussion,	8
Unit -2	Graphics standards and software, Software Configuration, Graphics Functions, Output primitives- Bresenham's line drawing algorithm and Bresenham's circle generating algorithm. World/device Coordinate Representation, Windowing and clipping, 2- D Geometric transformations - Translation, Scaling, Shearing, Rotation & Reflection Matrix representation, Composite transformation, 3 - D transformations, multiple transformation.	lecture with PPT, quiz, Audio/Video clips, group discussion	8
Unit -3	Curves representation, Properties of curve design and representation, Interpolation v/s approximation, Parametric representation of analytic curves, Parametric continuity conditions, Parametric representation of synthetic curves- Hermite cubic splines - Blending function formulation and its properties, Bezier curves - Blending function formulation and its properties, Composite Bezier curves, B-spline curves and its properties, Periodic and non-periodic B- spline curves	lecture with PPT, quiz, Audio/Video clips, group discussion	8
Unit -4	Polygon mesh representations, Quadric and Super quadric surfaces and blobby objects; Solid modeling-Solid entities, Fundamentals of Solid modeling-Set theory, regularized set operations; Half spaces, Boundary representation, Constructive solid geometry, Sweep representation, Color models Application commands for various commercial software	lecture with PPT, quiz, Audio/Video clips, group discussion	8
Unit -5	Numerical Methods: Introduction, Errors in numbers, Binary representation of numbers, Root finding-Bisection method, Newton- Raphson method, Curve fitting-Least square method, Numerical differentiation-Newton's interpolation, Numerical Integration- Trapezoidal and Simpson method border: 1px solid black;">PBL	lecture with PPT, quiz, Audio/Video clips, group discussion	8

<4d style="border: 1px solid black;">PBL

Modules	Title	Indicative-ABCA/PBL/ Experiments/Field work/ Internships	Bloom's Level	Hours
Experiment- 1	To create a 2D view of the given diagram using Auto CAD.	Experiments	BL2- Understand	2
Experiment- 2	To create a 2D view of the given diagram using Auto CAD.	Experiments	BL2- Understand	2
Experiment- 3	To create a 2D isometric view of the given diagram using Auto CAD.	Experiments	BL3-Apply	2
Experiment- 4	draw the sketch of the model shown in Figure using SolidWorks	Experiments	BL2- Understand	2
Experiment- 5	To draw the basic sketch for the revolved solid model shown in Figure using SolidWorks	Experiments	BL3-Apply	2
Experiment- 6	INTRODUCTION TO CATIA V5R19	Experiments	BL2- Understand	2
Experiment- 7	To draw the sketch of the model shown in Figure using CATIA	Experiments	BL3-Apply	2
Experiment- 8	INTRODUCTION TO FEA and ANSYS	BL4-Analyze	2	

Part D(Marks Distribution)

Theory									
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation				
100	40	40	12	60					
			Practical						
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation				
100	50	40	20	60					

	Part E
Books	Kumar, S., Srivastava, S. K., & Srivastava Sr., S. K. (2012). Computer Aided Design: A Basic and Mathematical Approach I.K. International Publishing House Pvt. Limited Zeid, I. (2016). Mastering CAD/CAM. McGraw-Hill Education.
Articles	
References Books	Kularatne, D., & Wijesundara, S. (2017). Computer-Aided Design and Manufacturing. CRC Press. Groover, M. P., & Zimmers, E. W. (2014). CAD/CAM: Computer-Aided Design and Manufacturing. Prentice Hall.
MOOC Courses	https://archive.nptel.ac.in/courses/112/102/112102101/
Videos	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	-	-	-	2	2	-	-	3	3	-	-	3	-	2
CO2	3	-	1	2	2	2	-	-	3	3	-	-	3	2	2
CO3	2	-	2	1	2	-	2	-	2	1	-	1	3	3	2
CO4	3	2	2	3	2	-	2	2	-	-	2	2	3	-	2
CO5	2	2	1	2	2	-	-	3	-	-	3	2	3	-	2
CO6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

(SOET)(BTech-MechanicalEngineering)

Title of the Course	Refrigeration and Air Conditioning
Course Code	MEL0723[T]

		Compating 7th Oradita			L	Т	Ρ	С	
Year	4th	Semester	7th	Credits	2	1	1	4	
Course Type	Embedde	ed theory and lab			-				
Course Category	Discipline	e Core							
Pre-Requisite/s	Knowled	ge of thermodynamics	and fluid mechanics	Co-Requisite/s					
Course Outcomes & Bloom's Level	CO2- To CO3- To CO4- To	 CO1- To recall the concepts of Basic Thermodynamics.(BL1-Remember) CO2- To understating the concept of Energy conversion systems.(BL2-Understand) CO3- To applying the basic concept of Heat Transfer.(BL3-Apply) CO4- To determine the options of Refrigerants(BL4-Analyze) CO5- To evaluate the safe conditions of emission levels.(BL5-Evaluate) 							
Coures Elements	Skill Development ✓ Entrepreneurship × Employability ×								

-

Modules	Contents	Pedagogy	Hours
1	Introduction to refrigeration system, Methods of refrigeration, Carnot refrigeration cycle, Unit of refrigeration, Refrigeration effect and C.O.P. Open and closed air refrigeration cycles, Reversed Carnot cycle, Bell Coleman or Reversed Joule air refrigeration cycle, Boot strap refrigeration	Lectures with whiteboard/PPT, Quiz, Group discussion	10
2	Vapor Compression System, Single stage system, Analysis of vapor compression cycle, Use of T-S and P-H charts, Effect of change in suction and discharge pressures on C.O.P., Effect of sub cooling of condensate & superheating of refrigerant vapor on C.O.P. of the cycle, Actual vapor compression refrigeration cycle, Multistage vapor compression system requirements, Inter cooling, Different configuration of multistage system, Cascade system.	Lectures with whiteboard/PPT, Quiz, Group discussion	8
3	Principle of vapour absorption refrigeration system, Comparison between absorption and compression systems, Elementary idea of refrigerant absorbent mixtures, Temperature - concentration diagram and Enthalpy – concentration diagram, Adiabatic mixing of two streams, Ammonia – Water vapor absorption system, Lithium- Bromide water vapor absorption system, Comparison. Refrigerants: Classification, nomenclature, properties. Types of refrigerants	Lectures with whiteboard/PPT, Quiz, Group discussion	10
4	Introduction to air conditioning, Psychometric properties and their definitions, Psychometric chart, Different Psychometric processes, Effective temperature and comfort chart, Cooling and heating load calculations, Selection of inside and outside design conditions, Heat transfer through walls & roofs, Infiltration and ventilation, Internal heat gain, Sensible heat factor, By pass factor, Grand Sensible heat factor, Apparatus dew point.	Lectures with whiteboard/PPT, Quiz, Group discussion	8
5	Refrigeration and air conditioning equipment e. g. compressors, condensers, evaporators & expansion devices, air washers, cooling towers and humidifying efficiency, Cold storage and food preservation, Freezers, Ice plant, Water coolers, Basic difference between comfort and industrial air conditioning.	Lectures with whiteboard/PPT, Quiz, Group discussion	8

	m t	\sim
гa	rτ	C

Modules	Title	Indicative-ABCA/PBL/ Experiments/Field work/ Internships	Bloom's Level	Hours
1	Study of VCRC	Experiments	BL2-Understand	03
2	To estimate COP of mechanical heat pump and refrigerator	Experiments	BL3-Apply	03
3	To study VARC	Experiments		03
4	To estimate COP of vapor compression ice plant	Experiments	BL4-Analyze	03
5	Estimate performance of window air conditioning system	Experiments	BL5-Evaluate	03
6	Study of 2 stage reciprocating air compressor	Experiments	BL6-Create	03
7	To study element of air conditioning system	Experiments	BL5-Evaluate	03
8	Study about various refrigerant	PBL	BL3-Apply	03

Part D(Marks Distribution)

			Theory		
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation
100	40	40	12	60	
			Practical		
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation
100	50	40	20	60	

	Part E				
Books Refrigeration and Air Conditioning Technology Modern Refrigeration and Air Conditionin					
Articles					
References Books	1 Hooman Gohari Air Conditioning and Refrigeration Repair Made Easy McGraw-Hill Education				
MOOC Courses	https://onlinecourses.nptel.ac.in/noc22_me135/preview				
Videos					

Part E

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	-	1	1	2	2	-	-	3	3	-	-	3	2	2
CO2	3	1	2	2	2	2	2	1	3	3	1	-	3	3	3
CO3	3	2	2	2	1	2	2	2	2	1	-	3	3	3	3
CO4	1	3	3	3	2	I	3	2	I	-	3	2	3	2	2
CO5	-	2	2	2	2	3	3	I	I	-	2	-	3	-	3
CO6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Course Articulation Matrix

.

(SOET)(BTech-MechanicalEngineering)

Title of the Course	Total Quality Management
Course Code	MEL0727[T]

Year	4th	Semester	7th	Credits	L	Т	Р	С
i eai	701	Gennester	7.01	oreans	2	1	0	3
Course Type	Theory	y only						
Course Category	Discip	line Core						
Pre-Requisite/s	Basic Statist	knowledge of Pro ics	bability &	Co-Requisite/s				
Course Outcomes & Bloom's Level	CO2- CO3- CO4-	CO1- To recall industrial engineering and operation research(BL1-Remember) CO2- To understand the history of TQM(BL2-Understand) CO3- To apply the theories of TQM in real life industrial problems(BL3-Apply) CO4- To analyze the change in productivity through principles of TQM.(BL4-Analyze) CO5- To evaluate the different ways and theories of TQM(BL5-Evaluate)						
Coures Elements	Entrep Emplo Profes Gende Humai	evelopment ✓ preneurship ✓ yability × ssional Ethics × er × n Values ✓ nment ×	SDG (Goals)	SDG8(Decent work and economic growth) SDG12(Responsible consuption and production				ion)

Modules	Contents	Pedagogy	Hours
Unit-1	Evolution of Quality Historical Perspective, Basic Concepts of Quality, Vision, Mission and Objectives of an Organization, Corporate Structure in an Organization and Role of Quality	Lectures with whiteboard/PPT, Quiz, Group discussion	
Unit-2	Quality Quality Planning, Quality By Design, Quality Costs and Cost of Failure, Waste Control, How Quality Benefits Business, Quality and Competitiveness in Business, Zero Defects and Continuous Improvement	Lectures with whiteboard/PPT, Quiz, Group discussion	
Unit-3	Total Quality Concepts and Total Preventive Maintenance CWQC, Product Liability Difference in Western And Japanese Approach of TQM, Basic Philosophy and Fundamental Models of TQM, Total Quality and Ethics, Internal Politics and Total Quality Management, Quality Culture, Education and Training, Implementing Total Quality Management An Integrated System Approach, Total Preventive Maintenance— Self Assessment	Lectures with whiteboard/PPT, Quiz, Group discussion	
Unit-4	Leadership Leadership Role of Leadership and Commitment in Quality Deployment, Team Building, Motivation, and Rewards, Total Employee Empowerment, Quality Functions Measurement, Inspection, Testing, Calibration and Assurance	Lectures with whiteboard/PPT, Quiz, Group discussion	
Unit-5	Design Control and Conformity, Tolerance and Variability PDCA Cycle, Juran Trilogy, Crosby's 10 points and Deming's 14 Points Customers Requirements, Customer Supplier and Chain Links, Establishing Customer Focus Customer, Satisfaction, Measurement and Customer Retention	Lectures with whiteboard/PPT, Quiz, Group discussion	

Part D(Marks Distribution)

			Theory		
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation
100	40	40	12	60	
			Practical		
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation

Books	Joel E. Ross Total Quality Management: Text, Cases, and Readings Routledge
Articles	
References Books	R. Panneerselvam Total Quality Management: Key Concepts and Case Studies Prentice Hall India
MOOC Courses	https://onlinecourses.nptel.ac.in/noc20_mg34/preview
Videos	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	-	2	3	-	-	2	1	-	2	2	-	3	-	3
CO2	3	2	2	3	-	2	3	1	3	3	3	-	3	3	3
CO3	3	3	2	3	-	2	3	1	3	3	3	-	3	3	3
CO4	3	3	3	3	2	2	3	1	3	3	3	1	3	3	3
CO5	3	3	3	3	2	2	3	1	3	3	3	1	3	3	3
CO6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Course Articulation Matrix

Part E

3/10/25, 1:50 PM

-

Syllabus-2019-2020

(SOET)(BTech-MechanicalEngineering)

Title of the Course	Major Project	
Course Code	MED0803[P]	

Part A

			FallA					
Year	4th Semester		8th	Credits	L	Т	Р	С
Teal			our	Credits	0	0	8	8
Course Type	Lab only	4						
Course Category	Projects	and Internship						
Pre-Requisite/s		dge of Mechanical er ciplinary subjects.	ngineering and	Co-Requisite/s				
Course Outcomes & Bloom's Level	CO1- To enhance writing skills and knowledge.(BL2-Understand) CO2- To increase their mental ability.(BL3-Apply) CO3- To inculcate the ability to express innovative opinion and thoughts.(BL4-Analyze) CO4- To have Dissertation works as skills development in students.(BL5-Evaluate))
Coures Elements	Entrepre Employa Professi Gender	ional Ethics X X Values X	SDG (Goals)	SDG9(Industry Innovation and Infrastructure)				

Part B

Modules Contents	Pedagogy	Hours
------------------	----------	-------

Part C

Modules	Title	Indicative-ABCA/PBL/ Experiments/Field work/ Internships	Bloom's Level	Hours
Module-I	Identification of a problem and formulation of a topic of project/thesis	PBL	BL3-Apply	15 hrs
Module-II	To have field work and data collection through a chosen methodology	PBL	BL4-Analyze	15 hrs
Module-III	Dissertation and Viva-voci	PBL	BL5-Evaluate	20 hrs

		Part D(N	larks Distribution)		
			Theory		
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation
	150				
	•		Practical		
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation
300	150	120	60	180	

Part E

Books	
Articles	
References Books	
MOOC Courses	
Videos	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2	-	1	-	-	-	-	-	-	-	2	2	2
CO2	1	-	2	-	2	-	-	-	-	-	-	-	1	2	1
CO3	1	2	-	2	1	-	-	-	-	-	-	-	2	2	1
CO4	1	1	-	2	-	-	-	-	1	-	-	-	2	2	1
CO5	-	-	-	-	1	-	-	-	-	1	-	-	2	1	1
CO6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

(SOET)(BTech-MechanicalEngineering)

Title of the Course	Vibration and Noise- Measurement and Control
Course Code	MEE0809

Year	4th	Semester	8th	Credits	L	Т	Ρ	С		
		Comester	our	oreans	2	1	0	3		
Course Type	Theory or	וy								
Course Category	Discipline	Electives								
Pre-Requisite/s	and Noise dynamics mathema linear alg	ites for the course "Mec e" include a solid unders , mechanics of materials tics, particularly different ebra. Familiarity with me behavior under varying l	derstanding of rials, and erential equations and Co-Requisite/s mechanical systems							
Course Outcomes & Bloom's Level	CO2- To frequency CO3- To i Apply) CO4- To a CO5- To a	remember the basic of m Understand the mathem of mechanical system(I mplement measurement analyze the theoretical c evaluate the applications ch, structure health mon	atical model and dete BL2-Understand) t of the free, Noise a oncept of vibration in of mechanical vibra	ermine the natural and forced vibration with a shock absorber (BL4-A tion and noise in various	orce dan nal y	éd npinę yze)				
Coures Elements	Entreprer Employat	nal Ethics X k alues X	SDG (Goals)	SDG4(Quality education)						

Modules	Contents	Pedagogy	Hours
Unit -1	Fundamental Aspects of Vibrations: Vibration, main causes, advantages and disadvantages; engineering applications of vibration and noise; vector method of representing harmonic motion; characteristics of vibration, harmonic analysis and beats phenomenon, work done by harmonic forces on harmonic motion; periodic, non-harmonic functions- Fourier series analysis; evaluation of coefficients of Fourier series; elements of vibratory system; lumped and distributed parameter systems. Undamped Free Vibrations: Undamped free vibration: Single degree of freedom Systems, introduction, undamped free vibration – Natural frequency' of free vibration, Rayleigh's method, stiffness of spring elements, effects of spring mass, Energy method, Newton's method and D' Alembert' s principle- problems	Audio/Video clips, group discussion, lecture with PPT, quiz	8
Unit -2	Damped Free Vibrations: Viscous damping: coefficient of damping; damping ratio; under damped, over damped and critically damped systems; logarithmic decrement; frequency of damped free vibration; Coulomb or dry friction damping; frequency, decay rate and comparison of viscous and Coulomb damping; solid and structural damping; slip or interfacial damping.	Audio/Video clips, group discussion, lecture with PPT, Review Analysis	8
Unit -3	Forced Vibration: Forced vibration: Single degree of freedom systems, steady state solution with viscous damping due to harmonic force solution by complex algebra, concept of response, reciprocating and rotating unbalance, vibration isolation Transmissibility ratio, energy dissipated by damping equivalent, Viscous damping, Structural damping, sharpness or resonance, base excitation. Whirling Motion and Critical Speed: Whirling motion and Critical speed: Definitions and significance .Critical –speed of a vertical , light –flexible shaft with single rotor : with and without damping .Critical speed of a shaft carrying multiple discs (without damping), Secondary critical speed.	Audio/Video clips, group discussion, lecture with PPT, Review Analysis	8
Unit -4	Systems With Two Degrees of Freedom : Un-damped free vibration of Two-D.O.F and Principal modes of vibration; torsion vibrations; Forced, Un-damped vibrations with harmonic excitation; Coordinate coupling; Dynamic vibration absorber; torsion Vibration Absorber; Pendulum type of dynamic vibration.	Audio/Video clips, group discussion, lecture with PPT, quiz	8

Unit -5	Noise Engineering – Subjective response of sound: Frequency and sound dependent human response; the decibel scale; relationship between, sound pressure level (SPL), sound power level and sound intensity scale; relationship between addition, subtraction and averaging, sound spectra and Octave band analysis; loudness; weighting networks; equivalent sound level, auditory effects of noise; hazardous noise, exposure due to machines and equipment's; hearing conservation and damage risk criteria, daily noise doze. Noise: Sources, Isolation and Control: Major sources of noise on road and in industries, noise due to construction equipments and domestic appliances, industrial noise control, strategies- noise control at source (with or without sound enclosures), noise control along the path (with or without partitions and acoustic barriers); noise control at the receiver, ear defenders, earplugs, semi-insert protectors.	Audio/Video clips, group discussion, lecture with PPT, quiz	8
---------	--	--	---

Part C

Modules	Title	Indicative-ABCA/PBL/ Experiments/Field work/ Internships	Bloom's Level	Hours
1	Fabrication of Model of Spring Mass System	PBL	BL3-Apply	2

Part D(Marks Distribution)

			Theory		
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation
100	40	40	12	60	
			Practical		
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation

	Part E
Books	Grover, G. K. (2009). Mechanical Vibrations. Nem Chand & Bros. Rao, S. S. (2011). Mechanical Vibrations. Pearson Education.
Articles	
References Books	Thomson, W. T. (2010). Theory of Vibration with Applications. Cengage Learning. Den Hartog, J. P. (1985). Mechanical Vibrations. Dover Publications.
MOOC Courses	https://archive.nptel.ac.in/courses/112/107/112107212/
Videos	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	-	-	-	2	2	-	-	3	3	-	-	3	-	2
CO2	3	-	2	1	1	3	-	-	3	3	-	-	3	2	2
CO3	2	-2	2	-	2	2	2	-	2	1	1	2	3	2	2
CO4	2	2	2	2	2	I	I	-	-	1	3	3	-	2	2
CO5	1	2	1	1	2	2	-	-	-	-	2	1	3	-	2
CO6	-	I	-	-	-	-	-	-	-	-	-	-	-	-	-

(SOET)(BTech-MechanicalEngineering)

Title of the Course	Foundry Engineering
Course Code	MEE0810

Year	4th	Semester	8th	Credits	L	Т	Р	С
Tear	401	Semester	011	Credits	3	1	0	4
Course Type	Theory	only						
Course Category	Disciplin	ne Electives						
Pre-Requisite/s		dge of manufacturing Ily casting technique		Co-Requisite/s				
Course Outcomes & Bloom's Level	CO2- To CO3- To Apply) CO4- To Analyze	o understand the cor o apply the concepts o analyze the produc e)	icepts of casting(B of casting process tion process and a	tience (BL1-Remember SL2-Understand) ses in various machining accordingly design the c ting process for a comp	g com asting	tech	nique(BL4-
Coures Elements	Entrepro Employa Profess Gender	Values ×	SDG (Goals)	SDG7(Affordable and SDG9(Industry Innova Infrastructure)			3)	

Modules	Contents	Pedagogy	Hours
Unit-I	Internal Stress, Defects and Surface Finish: Residual stresses, Hot tears and cracks in casting; Stress relief, defects and their causes and remedies; Parameters affecting surface finish and related defects e.g., Rough casting, bum-on sand bum-in metal penetration, Facing and washes; Mold wall movement; transport zones, Expansion scabbing etc.	Lectures with whiteboard/PPT, Quiz, Group discussion	8
Unit-II	Principles of Gating and Risering: Purpose of the gating system, Components of gating system and its functions, Design of gating system, Types of gates, Gating ratio and its functions, Functions, types and applications of the riser, design of riser and its shape, size and location, Use of insulating material and exothermic compounds in risers.	Lectures with whiteboard/PPT, Quiz, Group discussion	8
Unit-III	Design of Casting and Quality Control: Factors to be considered in casting design, design considerations in pattern making, Moulding techniques, Core making and assembly, Cooling stresses and hot spots in casting and modification in casting geometry to overcome them. Casting quality control- Casting defects and factors responsible for them, different inspection and testing methods to evaluate the casting, Quality control activities in a foundry, Salvaging methods of defective casting,.	Lectures with whiteboard and PPT,Quiz, Report writing	8
Unit-IV	Furnace Technology: Study of various furnaces used in foundry, Construction and operation of cupola, cokeless cupola, Arc, induction, plasma, rotary, crucible and hearth furnaces, Comparison of their environmental emissions and energy consumption. Heat treatment furnaces and drying ovens used in foundry Cast Iron Foundry Practice: Chemical composition and structure of gray CI-Graphite structure in gray CI & graphite distribution, Inoculation of gray CI, Application of gray CI castings, Ductile Cast Iron-Chemical composition and structure of ductile CI, Melting and spherodisation treatment, Inoculation of ductile iron properties and applications of ductility's on casting.	Lectures with white board and PPT, Quiz, seminar, Poster and PPT	8
Unit-V	Foundry Mechanization and Modernization: Introduction to modernization, Mechanization of foundry and its advantages, Mechanization of sand plant, Moulding and core making mechanization in melting, pouring and shakeout units, Material handling equipments and conveyor systems, Brief sketches and description of itmuniversity.ac.in/exam/syllabusreportcoursewise/	Lecture with white board and PPT, Audio/Video clips, group discussion, quiz	8

			Theory		
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation
100	40	40	12	60	
			Practical		
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation

Part E

Books	1. Bronze Sculpture Casting And Patination: Mud Fire Metal Steve Hurst Schiffer Publishing 2. Fine Art Metal Casting Richard Rome
Articles	
References Books	1. Casting Technology and Cast Alloys Chakraborty Prentice Hall of India 2. Meta Casting: Principles and Practice TV Rammana Rao New Age International
MOOC Courses	https://www.shiksha.com/online-courses/foundry-engineer-certification
Videos	

COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	1	1	-	1	1	-	-	-	-	-	1	1	1
CO2	1	1	1	1	1	1	1	-	-	-	-	-	1	2	2
CO3	2	2	2	2	2	2	3	-	1	1	1	1	3	3	3
CO4	2	3	3	2	3	2	3	-	1	1	2	1	3	3	3
CO5	2	3	3	3	3	2	3	-	1	1	2	1	3	3	3
CO6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

(SOET)(BTech-MechanicalEngineering)

Title of the Course	Advanced welding technology
Course Code	MEE0811

Year	4th	Semester	8th	Credits	L	Т	Р	С
	401	Jennester	001	Credits	3	1	0	4
Course Type	Theory	only						
Course Category	Discipli	ne Electives						
Pre-Requisite/s	Knowle practice	edge of production es	and workshop	Co-Requisite/s				
Course Outcomes & Bloom's Level	Remen CO2- T CO3- T CO4- T (BL4-A	nber) o comprehend and o apply the conver o analyze the vario nalyze)	l classify the varient ntional and advan ous welding proce	ing process and worksh ous joints in welding. (BL iced welding tools in joir ess and compare with of rrends in welding technic	_2-Un ning pr ther jo	dersta ocess(ining p	nd) BL3-A rocess	es.
Coures Elements	Entrepr Employ Profess Gender Human	evelopment ✓ reneurship × /ability × sional Ethics × r × values × nment ×	hip × SDG (Goals) SDG9(Industry Innovation and Infrastructure) ×					ıre)

-

Modules	Contents	Pedagogy	Hours
Unit-I	Welding Metallurgy: Welding as compared with other fabrication processes, Classification of welding processes; Heat affected zone and its characteristics; Effects of alloying elements on weldability, Weldability of steels, stainless steel, cast iron, and aluminum and titanium alloys, Weld testing standards, Hydrogen embrittlement, Lamellar tearing, residual stresses and its measurement, heat transfer and solidification, Analysis of stresses in welded structures, Pre and post welding heat treatments, Metallurgical aspects of joining, Conditions of soldering, Brazing and welding of materials.	Lectures with whiteboard/PPT, Quiz, Group discussion	8
Unit-II	Weld Design & Quality Control: Principles of sound weld design, Welding joint design, Welding defects; Testing of weldament, Material joining characteristics, Welding positions, Allowable strength of welds under steady loads, Weld throat thickness; Weld quality, Discontinuities in welds, their causes and remedies and quality conflicts.	Lectures with whiteboard and PPT,Quiz, Seminar, Poster	8
Unit-III	Modern Trends in Welding: Friction welding, Explosive welding, Diffusion bonding, High frequency induction welding, Ultrasonic welding, Electron beam welding, Plasma arc welding, Laser welding.	Lectures with whiteboard/PPT, Quiz, Group discussion	8
Unit-IV	Mechanisation in Welding: Mechanisation of flat/circular joints, Thin/thick sheets (resistance/arc weld), Mechanisation of I beams (arc weld), Longitudinal circumferential SA welding (roller blocks, column booms, flux supports),Circular/spherical welding joints (rotating tables positioners), Manufacture of welding longitudinal welded pipes by induction, TIG, Plasma and SA welding of spiral welded pipes.	Lectures with whiteboard/PPT, Quiz, Group discussion	8
Unit-V	Robotics in Welding: Robot design and applications in welding, Programming of welding robots, tolerances for assemblies for robot welding, New generation of welding robots, Self alignment by current arc variation, Robots for car body welding, Microelectronic welding and soldering, Efficiency of robotics in welding.	Lectures with whiteboard/PPT, Quiz, Group discussion	8

			Theory		
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation
100	40	40	12	60	
			Practical		
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation

Part E

Books	1. Advanced Welding Processes Nikodaco & Shansky MIR Publications 2. Welding Technology and Design VM Radhakrishnan New Age International 3. Source Book of Innovative welding Processes M.M. Schwariz Americal Society of Metals (Ohio)
Articles	
References Books	1. Advanced Welding Systems, Vol. I, II, III J. Cornu Jaico Publishers 2. Manufacturing Technology (Foundry, Formingand Welding)P.N. Rao Tata McGraw Hill
MOOC Courses	https://alison.com/course/advances-in-welding-and-joining-technologies
Videos	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	-	-	-	1	-	1	-	-	-	-	-	-	-	-
CO2	1	-	-	-	1	-	2	-	-	-	-	-	1	1	1
CO3	2	1	1	1	2	-	2	-	-	-	1	1	2	2	2
CO4	2	1	2	2	2	-	2	-	-	-	1	1	3	3	3
CO5	2	1	2	2	2	-	2	-	-	-	1	1	3	3	3
CO6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

(SOET)(BTech-MechanicalEngineering)

Title of the Course	Tribology Engineering
Course Code	MEE0812

Year	4th	Semester	8th	Credits	L	Т	Р	С
Tear		Gemester	our	oreans	3	1	0	4
Course Type	Theory	only						
Course Category	Discipli	ne Electives						
Pre-Requisite/s		dge of basic scienc Is science	es and	Co-Requisite/s				
Course Outcomes & Bloom's Level	 CO1- To recall the concepts of Basic sciences and materials science(BL1-Remember) CO2- Comprehend and classify the wear friction and lubrication phenomenon(BL2- Understand) CO3- To apply the concept of friction and minimization of wear through lubrication.(BL3- Apply) CO4- To analyze the efficiency enhancement through the application of tribology in design of components(BL4-Analyze) CO5- To evaluate for optimization of design through tribology.(BL4-Analyze) 							
Coures Elements	Skill Development ✓ Entrepreneurship × Employability × Professional Ethics × Gender × Human Values × Environment ×SDG (Goals)SDG9(Industry Innovation				ition ai	nd Infra	astruct	ure)

Modules	Contents	Pedagogy	Hours
Unit-I	Basic principles of tribology: Origins of sliding friction, Contact between bodies in relative motion, Friction due to adhesion, Friction due to ploughing, Friction due to deformation, Energy dissipation during friction, Friction under complex motion conditions, Types of wear and their mechanisms, Sliding contact between surface asperities, The probability of surface asperity contact, Wear in lubricated contacts Relation between fracture mechanics and wear, Film lubrication . Introduction to the concept of tribo design : Principles of tribo design, Tribological problems in machine design, Plain sliding bearings, Rolling contract bearings, piston rings and cylinder liners, Cam and cam followers, Friction drives, Involutes gears, Hypoid gears, Worm gears.	Lectures with whiteboard/PPT, Quiz, Group discussion	8
Unit-II	Elements of Contact Mechanics: Introduction, Concentrated and distributed forces on plane surfaces, Contact between two elastic bodies in the form of spheres, Contact between cylinders and between bodies of general shape, Failures of contacting surfaces, Design values and procedures, Thermal effects in surface contact, Contact between rough surfaces Representation of machine element contacts.	Lectures with whiteboard/PPT, Quiz, Group discussion	8
Unit-III	Friction, lubrication and wear in lower kinematic pairs : Introduction, The concept of friction angle, Friction in screws with a square thread, Friction in screws with a triangular thread, plate clutch – mechanism of operation, cone clutch – mechanism of operation, Rim clutch – mechanism of operation, Centrifugal clutch – mechanism of operation, Boundary lubricated sliding bearings, Drives utilizing friction force, Frictional aspects of brake design, The role of friction in the propulsion and the braking of vehicles, Tractive resistance, Pneumatic tyres, Creep of an automobile tyre Tribo design aspects of mechanical seals.	Lectures with whiteboard/PPT, Quiz, Group discussion	8
Unit-IV	Sliding-element bearings : Derivation of the Reynolds equation, Hydrostatic bearings Squeeze-film lubrication bearings, Thrust bearings, Journal bearings, Journal bearings for specialized applications, Gas bearings, Dynamically loaded journal bearings Modern developments in journal bearing design, Selection and design of thrust bearings self lubricating bearings. Friction, lubrication and wear in higher kinematic pairs : Introduction, itmuniversity.ac.in/exam/syllabusreportcoursewise/	Lectures with whiteboard/PPT, Quiz, Group discussion	8

/10/25, 1:50 PN	Λ		
	loads acting on contact area, Traction in the contact zone, Hysteresis losses, Rolling friction Lubrication of cylinders, Analysis of line contact lubrication, Heating at the inlet to the contact, Analysis of point contact lubrication, Cam-follower system.		
Unit-V	Rolling contact bearings : Introduction, Analysis of friction in rolling-contact bearings, Deformations in rolling contact bearings, Kinematics of rolling-contact bearings, Lubrication of rolling-contact bearings, Acoustic emission in rolling- contact bearings. Lubrication and efficiency of involute gears : Introduction, Generalities of gear design, Lubrication regimes, Gear failure due to scuffing, Gear pitting, assessment of gear wear risk, Design aspect of gear lubrication, Efficiency of gears.	Lectures with whiteboard/PPT, Quiz, Group discussion	8

		Theory		
Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation
40	40	12	60	
•		Practical		
Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation
	Marks 40 Minimum Passing	MarksEvaluation4040Minimum PassingExternal	Minimum Passing MarksExternal EvaluationMin. External Evaluation404012PracticalMinimum PassingExternalMin. ExternalMin. External	Minimum Passing MarksExternal EvaluationMin. External EvaluationInternal Evaluation40401260PracticalMinimum PassingExternalMin. ExternalInternal

	Part E
Books	1. Dudley D.Fulier "Theory and practice of Lubrication for Engineers", New YorkCompany.1998 2. Moore "Principles and applications of Tribology" Pergamon press, 1975 3. Oscar Pinkus, BenoSternlicht, "Theory of hydrodynamic lubrication", McGraw-Hill, 1961
Articles	
References Books	1. G W Stachowiak, A W Batchelor , "Engineering Tribology", Elsevier publication 1993. 2. Hydrostatic and hybrid bearings, Butterworth 1983. 3. F. M. Stansfield, Hydrostatic bearings for machine tools and similar applications, Machinery
MOOC Courses	https://nptel.ac.in/courses/112102015
Videos	

Part F

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	-	-	-	-	-	-	-	-	-	-	1	-	1	1
CO2	1	-	1	1	-	-	-	-	-	-	-	1	1	1	1
CO3	2	1	2	2	2	1	1	-	-	-	1	1	2	3	3
CO4	2	1	3	3	3	1	2	-	-	-	2	1	3	3	3
CO5	3	2	3	3	3	1	2	-	-	-	2	1	3	3	3
CO6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Course Articulation Matrix

(SOET)(BTech-MechanicalEngineering)

Title of the Course	Computer Integrated Manufacturing
Course Code	MEE0813

Year	4th	Semester	8th	Credits	L	Т	Ρ	С		
Tear	401	Semester	001	Creatis	2	1	0	3		
Course Type	Theory o	nly								
Course Category	Discipline	e Electives								
Pre-Requisite/s	of manuf	asic knowledge of properties of Materials types f manufacturing process, Computer application, roduction, planning and control.								
Course Outcomes & Bloom's Level	CO2- To Understa CO3- To Apply) CO4- To CO5- To	describe the significar and) apply the basics of CA analyze the PPC and	nce of group techno D and CAM in the Production schedul roduction schedulin	g for enhancing product	actur and F	MS.(BL3	-		
Coures Elements	Entrepre Employa	onal Ethics X X /alues X	SDG (Goals)	SDG9(Industry Innova Infrastructure)	ition	and				

Modules	Contents	Pedagogy	Hours
Unit-I	General Concepts -Introduction to CIM concepts, scope of CIM, CIM wheel, Evolution of CIM, needs and benefits of CIM, CAD – benefits, Graphics standards, CAD software, Applications of NC, advantages and disadvantages of NC, CNC, advantages and functions of CNC, DNC, advantages and functions of DNC, Integration of CAD/CAM/CIM.	Lectures with whiteboard/PPT, Quiz, Group discussion	8
Unit-II	Group Technology and Cellular Manufacturing: Concept of Group Technology and its Application, part families, part classification and coding, benefits of group technology; Clustering Techniques and Cellular Manufacturing.	Lectures with whiteboard/PPT, Quiz, Group discussion	8
Unit-III	Group Technology and Cellular Manufacturing: Concept of Group Technology and its Application, part families, part classification and coding, benefits of group technology; Clustering Techniques and Cellular Manufacturing.	Lectures with whiteboard/PPT, Quiz, Group discussion	8
Unit-III	Computer Aided Process Planning and Flexible Manufacturing System: Introduction, Methods of CAPP; Process Classifications and Selections, Process Sheet Documentation, CAD based Process Planning, Inventory management,; FMS concept, Scope of FMS, Type of FMS, FMS planning and implementation, FMS Scheduling, sequencing, FMS layout and essentials, application and benefits of FMS.	Lectures with whiteboard/PPT, Quiz, Group discussion	8
Unit-IV	Computer Aided Production Management: Introduction, production planning and control (PPC) fundamentals, use of computer in PPC such as Aggregate Production Planning(APP), Master Production Schedule(MPS), Material Requirement Planning(MRP), Manufacturing Resource Planning(MRPII), Enterprise Resource Planning (ERP), basics of JIT.	Lectures with whiteboard/PPT, Quiz, Group discussion	8
Unit-V	Automated Material Handling Systems and Monitoring and Quality Control: Industrial Robots, Conveyors, AGVs; Types of production monitoring system, process control and strategies, computer aided quality control, Objectives of CAQC, Integration of CAQC with CIM, basics of rapid prototyping.	Lectures with whiteboard/PPT, Quiz, Group discussion	8

	Theory								
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation				
100	40	40	0	60	0				
			Practical						
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation				
0	0	0	0	0	0				

Part E

Books	1. Pandey P. C. , 2010, Production Engineering, Science Standard Publishers, 2. Ghosh and Mallick, Manufacturing Science, East west press
Articles	
References Books	1. Groover M P, Fundamental of modern manufacturing: Materials, Processes, and System, John Wiley and Sons 2. Rao P. N., Manufacturing Technology, McGraw Hills
MOOC Courses	https://www.mooc-list.com/tags/computer-aided-manufacturing
Videos	

COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	-	-	-	1	1	-	2	1	3	3	1	1	1
CO2	3	3	1	1	-	1	3	-	1	1	2	1	1	1	1
CO3	3	3	3	2	2	2	1	2	1	-	1	2	2	2	2
CO4	3	3	2	3	2	2	1	I	1	1	2	2	3	3	3
CO5	3	3	3	3	2	2	2	2	2	3	3	3	3	3	3
CO6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

(SOET)(BTech-MechanicalEngineering)

Title of the Course	Design of Machine Tools
Course Code	MEE0815

Year	4th	Semester	8th	Credits	L	Т	Р	С
i eai		Gemester	our	orealta	3	1	0	4
Course Type	Theory	only						
Course Category	Discipli	ne Electives						
Pre-Requisite/s		dge of materials sci e design	ence and	Co-Requisite/s				
Course Outcomes & Bloom's Level	CO2- T design CO3- T CO4- T design(CO5- T	 CO1- To recall the concepts of materials science and machine design(BL1-Remember) CO2- To describe the significance of different materials and engineering mechanics to design components(BL2-Understand) CO3- To apply the basics of CAD and CAM in the design methodology(BL3-Apply) CO4- To analyze the different parameters of machine component design and tool design(BL4-Analyze) CO5- To evaluate the designing process of machine tool, power screws and bearings under various parameters(BL5-Evaluate) 						
Coures Elements	Entrepr Employ Profess Gender Human	evelopment ✓ eneurship × rability × sional Ethics × × Values × ment ×	SDG (Goals) SDG9(Industry Innovation and Infrastructu			ure)		

Modules	Contents	Pedagogy	Hours
Unit-I	Machine Tool Drive: working and auxiliary motion in machine, Machine tool drives, ydraulic transmission, Mechanical transmission, General requirements of machine tool design, Layout of machine tools. Regulation of Speed and Feed Rates: Aim of speed feed regulation, stepped regulation of speed, design of speed box,Design of feed box, Special cases of gear box design, Set stopped regulation of speed and feed rates.	Lectures with whiteboard/PPT, Quiz, Group discussion	8
Unit-II	Design of Machine Tool Structure: Fundamentals of machine tool structures and their requirements, Design criteria of machine tool structure, Static and dynamic stiffness, Design of beds and columns, Design of housing models, Techniques in design of machine tool structure.	Lectures with whiteboard/PPT, Quiz, Group discussion	8
Unit-III	Design of Guide-ways and power Screws: Function and type of guide-ways, design of slide-ways, Protecting devices for slide- ways, Design of power screws.	Lectures with whiteboard/PPT, Quiz, Group discussion	8
Unit-IV	Design of Spindles and Spindle Supports: Materials for spindles, Design of spindles, Antifriction bearings, Sliding bearings.	Lectures with whiteboard/PPT, Quiz, Group discussion	8
Unit-V	Dynamics of Machines Tools: General procedure of assessing dynamic stability of EES, Cutting processing, Closed loop system, Dynamic characteristics of cutting process, Stability analysis.	Lecture with white board and PPT, Audio/Video clips, group discussion, quiz	8

Part D(Marks Distribution)

			Theory		
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation
100	40	40	12	60	
			Practical		
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation

	Part E
Books	1. Machine Tool Design N.K. Mehta Tata McGraw Hill
Articles	
References Books	1. Machine Tool design Handbook - CMTI Banglore
MOOC Courses	https://www.imtmatraining.com/pages/13/machine-tool-design-mechanical
Videos	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	-	-	-	-	-	-	-	-	-	-	-	1	1	1
CO2	1	-	1	-	-	-	-	-	-	-	-	-	2	2	2
CO3	2	2	2	2	2	1	1	-	1	-	1	1	3	3	3
CO4	2	3	3	3	3	1	1	-	1	-	2	1	3	3	3
CO5	3	3	3	3	3	1	1	-	1	-	3	1	3	3	3
CO6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

(SOET)(BTech-MechanicalEngineering)

Title of the Course	Finite Element Method
Course Code	MEE0816

Year	4th	Semester	8th	Credits	L	Т	Ρ	С	
Teal			Creatis	2	1	0	3		
Course Type	Theory	only							
Course Category	Discipli	ne Electives							
Pre-Requisite/s	Knowle design	nowledge of basic sciences and machine co-Requisite/s							
Course Outcomes & Bloom's Level	CO2- Ic plane a CO3- A beams, solve th CO4- A Analyze	lentify the applicatic nd iso-parametric e ble to apply suitable circular shafts, hea em displacements, nalyse element cha e) evelop element cha	n and characteris ements. (BL2-Ui boundary condi t transfer, fluid flo stress and strain racteristic equation	ulation methods in FEM stics of FEA elements sin nderstand) tions to a global equation bw, axi symmetric and d is induced.(BL3-Apply) on and generation of glo on and generation of glo	uch as on for t ynami obal eo	s bars, bars, tr c prob quatior	beams usses, lems a n (BL4-	s, nd	
Coures Elements	Entrepr Employ Profess Gender Human	velopment ✓ eneurship ✓ ability ✓ ional Ethics × × Values × ment ×	SDG (Goals)	SDG9(Industry Innova	ition a	nd Infr	astruct	ure)	

Modules	Contents	Pedagogy	Hours
Unit-I	Introduction-Different approaches in Finite Element Method - Direct Stiffness approach, simple examples, Variational approach, Elements of variational calculus - Euler Lagrange equation, Rayliegh Ritz method, Weighted Residual methods, Point Collocation method, Sub domain Collocation method, Galarkins method - Steps involved in FEM.	Lectures with whiteboard/PPT, Quiz, Group discussion	8
Unit-II	Types of elements used Interpolation Polynomials - Linear elements Shape function - Analysis of simply supported beam - Element and Global matrices - Two- dimensional elements, triangular and rectangular elements - Local and Natural Co-ordinate systems.	Lectures with whiteboard/PPT, Quiz, Group discussion	8
Unit-III	Finite element formulation of field problems Classification of partial differential equations - Quasiharmonic equation - Steady state problems - Eigen value problems - Propogation problems - Examples, Torsional problem - Fluid flow and Heat transfer problems - Acoustic vibrations.	Lectures with whiteboard/PPT, Quiz, Group discussion	8
Unit-IV	Finite element formulation of solid mechanics problems Axial force member - element matrices for axial force members - Truss element analysis of pinned truss - Two dimensional elasticity problems	Lectures with whiteboard/PPT, Quiz, Group discussion	8
Unit-V	Numerical methods in fem Evaluation of shape functions - One dimensional & triangular elements, Quadrilateral elements, Isoperimetric elements - Numerical Integration, Gauss Legendre quadrature - Solution of finite element equations - Cholesky decomposition, Skyline storage - Computer implementation.	Lectures with whiteboard/PPT, Quiz, Group discussion	8

		Part D(M	larks Distribution)							
	Theory									
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation					
100	40	40	12	60						
			Practical							
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation					
	0									

	Part E
Books	1. Larry J Segerlind ," Applied Finite Element Analysis", John Wiley, 1984. 2. Bathe K.J., "Finite Element Procedures", Prentice Hall, 1994.
Articles	
References Books	3. Huebner and Thornton E.A., "The Finite Element Method for Engineers", John
MOOC Courses	https://www.mooc-list.com/tags/finite-element-method
Videos	

						000		licula				-	-		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	-	-	-	2	2	-	-	3	3	-	-	3	2	2
CO2	3	1	2	2	2	1	1	1	1	1	3	2	3	3	3
CO3	1	2	3	2	1	2	2	2	2	1	2	3	3	3	2
CO4	1	3	3	3	2	-	3	2	-	-	2	2	3	2	2
CO5	3	2	3	3	2	3	3	-	-	-	2	-	3	-	3
CO6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

(SOET)(BTech-MechanicalEngineering)

Title of the Course	Automobile Engineering
Course Code	MEL0825[T]

Veer	4th	Semester	Oth	Credite	L	Т	Р	С		
Year	401	Semester	8th	Credits	2	1	1	4		
Course Type	Embedo	mbedded theory and lab								
Course Category	Disciplin	ie Core								
Pre-Requisite/s		asic knowledge of engine parts. body of co-Requisite/s								
Course Outcomes & Bloom's Level	CO2- To CO3- To Apply) CO4- To CO5- To	 CO1- To remember basic parts of I C Engines(BL1-Remember) CO2- To Understand Transmission and Braking system(BL2-Understand) CO3- To Apply the knowledge of Braking System & Electrical System. in automobile(BL3- Apply) CO4- To analyze the braking and suspension system in automobile. (BL4-Analyze) CO5- To evaluated and summarize the braking, suspension, power transmission and Automobile Air Conditioning(BL5-Evaluate) 								
Coures Elements	Skill Development ✓ Entrepreneurship ✓ Employability ✓ Professional Ethics × Gender × Human Values × Environment ✓						gy)			

·

Modules	Contents	Pedagogy	Hours
Unit-1	Power Unit: Design and Principles of major components, valve mechanism, power and torque characteristics, rolling, air and gradient resistance, tractive effort, gearbox, gear ratio determination, design of gear box.	Lectures with whiteboard/PPT, Quiz, Group discussion	8
Unit-2	Transmission: Requirements, clutches, torque converters, overdrive and free wheel, universaljoint, differential gear mechanism of rear axle, automatic transmission, steering, and front axle, castor angle, wheel camber and toe-in, toe-out etc, steering geometry, Ackerman mechanism, under steer and over steer.	Lectures with whiteboard/PPT, Quiz, Group discussion Lectures with whiteboard/PPT, Quiz, Group discussion	8
Unit-3	Braking System: General requirements, Road tyre adhesion, weight transfer, braking ratio, mechanical brakes, hydraulic brakes, vacuum and air brakes, thermal aspects Chassis and Suspension System: Loads on the frame, strength and stiffness, various suspension systems.	Lectures with whiteboard/PPT, Quiz, Group discussion	8
Unit-4	Electrical System: Types of starting motors, generator and regulators, lighting system, ignition system, horn, battery. Fuel Supply System: Diesel & Petrol vehicle system such as fuel injection pump, injector and fuel pump, carburetor, MPFI.	Lectures with whiteboard/PPT, Quiz, Group discussion	8
Unit-5	Automobile Air Conditioning: Requirements, cooling and heating systems. Cooling and lubrication System: Different type of cooling system and lubrication system	Lectures with whiteboard/PPT, Quiz, Group discussion	8

Modules	Title	Indicative-ABCA/PBL/ Experiments/Field work/ Internships	Bloom's Level	Hours
Experiment- 1	To Study of Automobile Chasis.	Experiments	BL2- Understand	2
Experiment- 2	To Study of differential mechanism of an Automobile	Experiments	BL2- Understand	2
Experiment- 3	To Study of multiple clutch of an Automobile.	Experiments	BL2- Understand	2
Experiment- 4	To Study and demonstration of different circuit of carburettor.	Experiments	BL2- Understand	2
Experiment- 5	To Study of the electrical system of Automobile.	Experiments	BL2- Understand	2
Experiment- 6	To Study of the Torque convertor.	Experiments	BL2- Understand	2

	Theory								
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation						
100	40	40	12	60					
			Practical						
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation				
100	50	40	20	60					

Part E

Books	1. Automobile Engineering, Kripal Singh 2. Automotive Engineering, Hietner 3 Automotive Mechanics, Crouse
Articles	
References Books	1. Automobile Engineering, Narang 2. Automobile Engineering, Newton and Steeds. 3 Jack Erjavec and Jeff Arias, "Hybrid, Electric and Fuel Cell Vehicles", Cengage Learning, 2012
MOOC Courses	https://archive.nptel.ac.in/courses/107/106/107106088/
Videos	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	-	-	-	2	2	-	-	3	3	-	-	3	-	2
CO2	2	-	1	2	1	2	-	-	3	3	-	-	3	2	2
CO3	1	-	2	1	1	-	-	-	2	1	-	-	3	2	2
CO4	-	1	2	3	1	-	-	-	-	-	-	-	3	-	2
CO5	-	1	1	2	1	-	-	-	-	-	-	-	3	-	2
CO6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

(SOET)(BTech-MechanicalEngineering)

Title of the Course	CNC and Flexible Manufacturing Systems
Course Code	MEL0827[T]

Year	4th	Semester	8th	Credits	L	Т	Ρ	С		
	401	Jennester	our	Credita	2	1	1	4		
Course Type	Embed	mbedded theory and lab								
Course Category	Discipli	ne Core								
Pre-Requisite/s		ntional machining pr tion system	ocess and	Co-Requisite/s						
Course Outcomes & Bloom's Level	(BL1-R CO2- Tr Unders CO3- Tr CO4- Tr	emember) o understand the Ba stand) o implement G code o analyze the CNC	asic concept of G es, M codes in pro program. (BL4-A r	es of CNC operations a codes, M codes for prog gramming.(BL3-Apply) a alyze) program.(BL5-Evaluate	gramn)		-	ems.		
Coures Elements	Skill Development ✓ Entrepreneurship ✓ Employability ✓ Professional Ethics × Gender × Human Values × Environment ×					astruc	ture)			

•

Modules	Contents	Pedagogy	Hours			
Unit 1	Introduction to CNC Machine Tools: Development of CNC Technology-Principles and classification of CNC machines, Advantages & economic benefits, Types of control, CNC controllers, Characteristics, Interpolators, Applications, DNC concept.	Lectures with whiteboard/PPT, Quiz, Group discussion				
Unit 2	CNC Programming: Co-ordinate System, Fundamentals of APT programming, Manual part programming-structure of part programme, G & M Codes, developing simple part programmes, Parametric programming, CAM packages for CNC machines-IDEAS, Unigraphics, Pro Engineer, CATIA, ESPIRIT, Mastercam etc., and use of standard controllers- FANUC, Heidenheimer and Sonometric control system.	Lectures with whiteboard/PPT, Quiz, Group discussion	10			
Unit 3	Tooling for CNC Machines: Cutting tool materials, Carbide inserts classification; Qualified, semi- qualified and preset tooling, Cooling fed tooling system, Quick change tooling system, Tooling systemfor machining center and turning center, tool holders, Tool assemblies, Tool magazines, ATC mechanisms, Tool management.	Lectures with whiteboard/PPT, Quiz, Group discussion	9			
Unit 4	Robotics and Material Handling Systems: Introduction to robotic technology, and applications, Robot anatomy, material handling function, Types of material handling equipment, Conveyer systems, Automated guided vehicle systems, Automated storage/retrieval systems, Work-in-process storage, Interfacing handling and storage with manufacturing.	Lectures with whiteboard/PPT, Quiz, Group discussion	8			
Unit 5	Group Technology and Flexible Manufacturing System: group Technology- part families, Parts classification and coding, Production flow analysis, Machine Cell Design, Benefits of Group Technology, Flexible manufacturing systems- Introduction, FMS workstations, Computer control system, Planning for FMS, Applications and benefits.	Lectures with whiteboard/PPT, Quiz, Group discussion	8			

Modules	Title	Indicative-ABCA/PBL/ Experiments/Field work/ Internships	Bloom's Level	Hours
Experiment 1	To study the features of CNC machine tool.	Experiments	BL2- Understand	2
Experiment 2	To perform facing and turning operations on the given work piece.	Experiments	BL5-Evaluate	2
Experiment 3	To perform the multiple turning operation on the given work piece.	Experiments	BL5-Evaluate	2
Experiment 4	To perform the drilling operation on the given work piece.	Experiments	BL5-Evaluate	2
Experiment 5	To perform the boaring operation on the given work piece.	Experiments	BL5-Evaluate	2
Experiment 6	To perform the grooving operation on the given work piece.	Experiments	BL5-Evaluate	2
Experiment 7	To perform the threading operation on the given work piece.	Experiments	BL5-Evaluate	2

			Theory			
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation	
100	40	40	12	60		
			Practical			
Total Marks	Minimum Passing Marks	External Evaluation	Min. External Evaluation	Internal Evaluation	Min. Internal Evaluation	
100	50	40	20	60		

Part E

Books	Machines P. Radahkrishnan Computer Numerical Control New Central Book Agency H.K. Shivanand, M.M. Benal, V. Koti Flexible Manufacturing System New age international publishers
Articles	
References Books	M.S. Sehrawat and J.S. Narang CNC Machines Dhanpat Rai and Co. Prof. S. K. Sinha CNC Programming using Fanuc Custom Macro McGraw Hill, 2001
MOOC Courses	https://www.mooc-list.com/tags/automotive-engineering
Videos	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	-	-	2	2	2	2	1	3	1	-	-	3	3	3
CO2	2	-	-	2	1	2	-	-	1	1	-	-	3	2	3
CO3	2	1	2	2	2	2	-	-	-	-	-	-	3	2	3
CO4	2	2	2	2	1	-	-	-	-	-	-	-	2	-	3
CO5	2	1	1	2	2	-	-	-	-	-	-	-	2	-	3
CO6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Course Articulation Matrix

3/10/25, 1:50 PM

-